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1 Department of Physics, University of Maryland
2Institute for Research in Electronics and Applied Physics, University of Maryland

3 Department of Electrical and Computer Engineering, University of Maryland
4 Institute for Physical Science and Technology, University of Maryland

College Park, Maryland 20742, USA
5Department of Mechanical Engineering, University of New Mexico

Albuquerque, New Mexico 87131, USA
6 Institut für Theoretische Physik, Technische Universität Berlin

10623 Berlin, Germany
Email: [willcrs, tem, rroy]@umd.edu, fsorrent@unm.edu, dahms@itp.tu-berlin.de, schoell@physik.tu-berlin.de

Abstract—The study of group synchronization of delay-
coupled dynamical systems is of interest in the context of
physical and biological systems. The delay-coupled nodes
or oscillators are placed into groups based on different pa-
rameters or governing equations. In this case, it has been
shown theoretically that nodes in the same group may iden-
tically and isochronally synchronize with the other nodes
in the group, even if there is no direct intra-group cou-
pling [1, 2]. We report experimental observations of group
synchrony in a network of four nonlinear optoelectronic
feedback loops that are segregated into two groups of two
nodes each. Both nodes in a single group have identical
parameters, which may be different from the parameters in
the other group. All of the nodes are coupled to each node
in the other group, but there is no intra-group coupling. We
find that each node will identically synchronize with the
other node in its group, but will have distinctly different
dynamics than the nodes in the other group, to which it
is directly coupled. We compare the experimental results
with numerical simulations.

1. Introduction

The synchronization of dynamical systems is an interest-
ing subject for understanding many natural systems such as
phenomena in ecology, physiology, epidemiology, and col-
lective behavior of organisms. Additionally, achieving or
avoiding synchrony is a key feature in many engineering
applications such as sensors, transportation systems, and
structure design. Optoelectronic feedback loops have been
used to generate a variety of dynamical behaviors in experi-
ments, including chaotic and pulsed dynamics [3, 4]. These
experimental systems can be used to understand synchro-
nization properties between coupled oscillators [5].

When dynamical systems are coupled and placed into
two groups such that each node has identical equations and

parameters as the other nodes in its group, there are three
types of synchronous behavior possible that are described
in this paper: identical synchrony, cluster synchrony, and
group synchrony [2]. If the equations and parameters of the
two groups are the same, it is possible for the groups to dis-
play cluster synchrony, where all the nodes in a given group
are isochronally synchronized to the other nodes in the
group, but the two groups are not necessarily isochronally
synchronized. If all nodes are isochronally synchronized,
this identical synchrony is a special case of cluster syn-
chrony. If the equations or parameters of one group differ
from those of the other group, group synchrony is possi-
ble, in which case, like cluster synchrony, the nodes will
isochronally synchronize within a group, but not between
the groups. Group synchrony is a generalization of clus-
ter synchrony in which the nodes in one group need not be
identical to those in the other group.

2. Experimental Setup

We construct a system of four nodes, where each node is
an oscillator constructed from an optoelectronic feedback
loop. The nodes are separated into two groups, A and B,
with two nodes in each group, as shown in Fig. 1a. Both
nodes in group A have identical parameters, and both nodes
in group B have identical parameters, but the parameters
of group A may or may not be identical to the parameters
of group B. The primary distinguishing feature between
groups A and B is that nodes in group A are connected
to each node in group B and vice versa, but the nodes are
not directly connected to the other node in the same group.
Each loop is a nonlinear oscillator and has independent pa-
rameters that can be varied to create a wide range of dy-
namical behaviors, from fixed point to periodic to quasi-
periodic to chaotic. The oscillators are coupled with direc-
tional links, enabling unidirectional or bidirectional cou-
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Figure 1: a) Schematic of four nodes separated into two
groups, A (red) and B (blue). Except for the coupling
strength, β, all parameters are identical for all nodes. The
β values for each group may be different from the other
group, but the value of β is identical for each node in the
same group. b) Experimental set up of a single node, show-
ing coupling to the other nodes. Optical connections are
shown in red, electronic in black. The values for β are
controlled by a scale factor on the digital signal process-
ing (DSP) board.

pling between every pair of nodes. For the investigations
presented here, the coupling was adjusted so that there was
bidirectional coupling between each pair of coupled nodes.

Each feedback loop consists of an optical part and an
electronic part, as shown by the red and black lines in Fig.
1b. The nonlinearity is created by a Mach-Zehnder mod-
ulator (MZM), whose optical output is a cosine-squared
function of a voltage input. The coupling is implemented
optically, and is adjusted so that each connection has the
same coupling strength. In this particular experimental re-
alization of the optoelectronic feedback loop, each node
has a digital signal processing (DSP) board, usually used
for audio signal processing, that implements the feedback
and coupling delays, coupling strength, filter, and an over-
all gain factor to control the feedback strength, β. The
parameter β is the one that is varied in this investigation,
and although β is an overall feedback strength that is com-
posed of many factors including the gain of the photore-
ceivers and the amplifier after the DSP board, we adjust the
feedback strength with an amplification factor on the DSP

board only. Here, the feedback and coupling delays are
equal to the same delay, τ, which is set on the DSP board to
1.4 ms. The filter is a digital two-pole bandpass filter from
0.1 to 2.5 kHz with a sampling rate of 24 kS/s. The cou-
pling is diffusive coupling with a global coupling strength
of ε = 0.8, where the coupling strength of any given link
is ε/2 = 0.4, since there are two incoming connections to
each node. This means that for this coupling configuration
with two incoming signals to each nodes, the feedback sig-
nal is scaled by an additional factor of 1 − ε = 0.2.

The feedback strength, β, can be varied from 0 to 10, but
is maintained constant for a given realization. This is the
parameter that is adjusted in these experiments and simula-
tions described here. All other parameters are held constant
for all realizations. For each measurement taken, the sys-
tem is started with no feedback or coupling, from random
initial conditions. Then feedback is enabled, with no cou-
pling. Finally, coupling is enabled, and there is a transient
to synchrony, if synchrony can be observed.

3. Mathematical Model

The experimental setup of a single feedback loop can be
mathematically represented by the block diagram in Fig. 2.
It can be described by time delay differential equations [6]:

u̇i(t) = Aui(t) − Bβ cos2(xi(t − τ) + φ0), (1)

xi(t) = C[(ui(t) + ε
∑

j

Ki j(u j(t) − ui(t))], (2)

i = 1, ..., 4.
A, B, and C are constant matrices that describe the filter.

K is the coupling matrix, given by

K = 1/2


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 . (3)
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Figure 2: Mathematical block diagram of a single feed-
back loop. Each loop consists of a nonlinearity, diffusive
coupling with coupling strength ε, a time delay τ that is the
same for both feedback and coupling signals, a bandpass
filter represented by H, and an overall feedback strength β.



Figure 3: Bifurcation diagrams in (a) experiment and (b)
simulation for a single, uncoupled node [8]. The range of
β is not as wide as that reported in this paper, and the filter
is 0.1-10 kHz, rather than 0.1-2.5 kHz.
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Figure 5: Simulation (a,b) and experimental (c,d) time
traces. For βA = 3.3 and βB = 4.7, the dynamics of the
four nodes split into two distinct groups, A (red, solid) and
B (blue, dashed), and we observe group synchrony. The
coupled dynamics display a slightly larger amplitude for
Group B than for Group A.

Numerical simulations use a discrete time implementa-
tion of these differential equations, as described in [7]. The
simulations produce remarkable agreement to the experi-
mental results for the variety of dynamical behaviors that
can be observed. Bifurcation diagrams for a single, uncou-
pled node of this system with a filter from 0.1 to 10 kHz
have been reported in [8] and are shown in Fig. 3. It can
be seen that these systems can display a wide variety of
dynamical behaviors (fixed point, periodic, quasiperiodic,
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Figure 4: Simulation (a,b) and experimental (c,d) time
traces. For all values of β = 3.3, the four nodes display
identical synchrony. The dynamics of the coupled nodes
(a,c) are qualitatively the same as the dynamics of the un-
coupled nodes (b,d).
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Figure 6: Simulation (a,b) and experimental (c,d) time
traces. For βA = 3.3 and βB = 7.6, the dynamics of the
four nodes split into two distinct groups, A (red, solid) and
B (blue, dashed), and we observe group synchrony. Here,
the dynamics of Group A are clearly different qualitatively
from the dynamics of Group B.

and chaotic), and that the dynamics in simulation corre-
spond well to the dynamics observed in the experiments.

4. Experimental Results

When we couple the four nodes as shown in Fig. 1,
we observe identical synchrony, group synchrony, or clus-
ter synchrony, as described above. For βA = βB = β for
small values of β, the four nodes display identical syn-
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Figure 7: Simulation (a,b) and experimental (c,d) time
traces. For βA = 7.6 and βB = 6.6, the dynamics of the
four nodes split into two distinct groups, A (red, solid) and
B (blue, dashed), and we observe group synchrony. The
dynamics of Group A have only a slightly larger amplitude
than the dynamics of Group B.

chrony (Fig. 4). As βA and βB are made non-identical,
we observe group synchrony (Figs. 5-7). For larger val-
ues of identical βs, however, we see cluster synchrony and
not identical synchrony (Fig. 8). Theoretical analysis in-
dicates that for small values of identical βs (Fig. 4), we
expect bistability between cluster and identical synchrony.
However, this is not a trivial observation to make experi-
mentally. For βA , βB, we observe group synchrony, in
general.

5. Conclusions

We have constructed an experiment with four optoelec-
tronic nonlinear oscillators that are coupled together in a
two-group configuration. In this configuration, we ob-
serve group synchrony, in which the dynamics of the nodes
within a particular group are identically synchronized. For
the case where the parameters of the two groups are dif-
ferent, we observe group synchrony, where the dynamics
of the two groups are qualitatively and quantitatively dif-
ferent. For the cases when the parameters of all nodes are
identical, we observe identical (small β) or cluster (large β)
synchrony. Numerical simulations show similar behaviors
for the dynamics of the nodes, both for the case where the
nodes are uncoupled and for the case where the nodes are
coupled into the two-group configuration.
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Figure 8: Experimental (a,b) and simulation (c,d) time
traces. For all values of β = 7.6, the four nodes display
cluster synchrony, but not identical synchrony, despite the
fact that all four nodes have identical parameters. The dy-
namics of the coupled nodes (a,c) are qualitatively the same
as the dynamics of the uncoupled nodes (b,d).
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