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We experimentally demonstrate and numerically simulate an adaptive method to maintain synchronization
between coupled nonlinear chaotic oscillators, when the coupling between the systems is unknown and time-
varying �e.g., due to environmental parameter drift�. The technique is applied to optoelectronic feedback loops
exhibiting high-dimensional chaotic dynamics. In addition to keeping the two systems isochronally synchro-
nized in the presence of a priori unknown time-varying coupling strength, the technique provides an estimate
of the time-varying coupling.
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I. INTRODUCTION

A surprising result of past research �1–4� is that, even if
several individual systems behave chaotically, in the case
where the systems are identical �near identical�, by proper
coupling, the systems can be made to evolve toward a situ-
ation of exact �approximate� isochronal synchronism. That
is, in the case of identical systems, the chaotic orbits of the
individual systems are precisely the same, and at every in-
stant of time, the states of each of the coupled systems are all
equal. Moreover, the coupling can be designed so that, in the
synchronized state, the coupling terms become zero and are
only nonzero when the states of the individual coupled sys-
tems are out of synchrony �5�. Various uses of this phenom-
enon have been proposed. These include secure communica-
tion �2,6�, use of the chaotic signal to encode information
�7�, parameter estimation and prediction, �8,9� and sensors
�10�. In all of these applications, synchronism of chaos is
critically dependent upon maintenance of a proper coupling
between the systems. In general, coupling may be thought of
as utilizing channels through which the individual systems
exchange partial information about their states. In this paper,
we consider the case where these channels are subject to time
dependent changes that are unknown to the individual
coupled systems, and we address the issue of how to adap-
tively adjust the coupling to maintain synchrony in the pres-
ence of such changes. We emphasize that channel change or
“drift” is a potentially very common situation �e.g., due to
environmental changes that affect the channels� and its effect
may be crucial to the determination of the robustness of the
above mentioned applications.

Adaptive synchronization strategies in a network of non-
linear oscillators have been a topic of much interest �e.g.,
�10–12��. Sorrentino and Ott �10� proposed and simulated an
efficient adaptive algorithm that maintains synchronization
among a network of connected dynamical systems in the
presence of a priori unknown time-varying coupling. In this
work, we experimentally demonstrate this scheme using a
pair of nonlinear time-delayed optoelectronic feedback loops

as the dynamical systems. These systems are similar to those
used recently for chaotic communication by Kouomou et al.
�13� and Argyris et al. �6�. The technique is shown to both
maintain isochronal synchronization �14,15� between the two
systems and, in the process, generate a real-time estimate of
the originally unknown time variations in the coupling.

II. EXPERIMENTAL SETUP

Each feedback loop in our experimental setup �Fig. 1�
comprises a semiconductor laser that serves as the optical
source, a Mach-Zehnder electro-optic modulator, a photore-
ceiver, an electronic filter, and an amplifier. The electronic
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FIG. 1. �Color online� The transmitter and receiver systems are
optoelectronic feedback loops coupled through an optical channel
that may be subject to environmental drift in time, thus perturbing
the coupling strength between the two dynamical systems. The DSP
board contains a dual input analog-to-digital converter �ADC�, a
signal processing unit, memory, and a digital-to-analog converter
�DAC�.
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filter is chosen to be a two-pole bandpass filter. The dynam-
ics of the feedback loop can be modeled by the delay-
differential equations �8,13�,

�L
−1dx1�t�

dt
= − �1 +

�H

�L
�x1�t� − y1�t� − � cos2�x1�t − �� + �o� ,

�H
−1dy1�t�

dt
= x1�t� . �1�

Here, x1�t� is the normalized voltage signal applied to the
electro-optic modulator, � is the feedback time delay, and �o
is the bias point of the modulator. �L and �H are the filter’s
low-pass and high-pass corner frequencies. � is the dimen-
sionless feedback strength proportional to the optical power
Po entering the electro-optic modulator. The optical output of
the electro-optic modulator is P1�t�= Po cos2�x1�t�+�o�. In-
corporating a programmable component as part of the feed-
back loop allows us to perform real-time computations such
as the implementation of an adaptive synchronization algo-
rithm. We use a digital signal processor �DSP� based pro-
grammable board �Spectrum Digital DSK6713� to perform
electronic filtering and time delay. The collected samples are
filtered digitally using the DSP. The filtered signal is then
stored in memory for a desired amount of time before being
output. This, combined with processor latency, produces the
total loop time delay �. The discrete time difference equa-
tions describing the digital filter are presented and discussed
in �16�.

Depending on the value of the feedback strength and de-
lay, the loop is capable of producing dynamics ranging from
periodic oscillations to high-dimensional chaos �8,13�. For
the measurements reported here, we adjusted the laser power
Po to yield a feedback strength of �=3.58, and we pro-
grammed the DSP board to produce a net feedback delay of
1.5 ms. The high-pass cut-on frequency was designed to be
�H / �2��=100 Hz, and the low-pass cut-off frequency was
chosen to be �L / �2��=2.5 kHz. The bias point of the
electro-optic modulator is adjusted to �o=� /4. With this
choice of parameters, the system exhibits high-dimensional
chaotic dynamics.

We couple two nominally identical optoelectronic feed-
back loops unidirectionally, i.e., the transmitter affects the
dynamics of the receiver, but not vice versa. Thus, the equa-
tions of motion describing the coupled system are given by
Eq. �1� for the transmitter and

�L
−1dx2�t�

dt
= − �1 +

�H

�L
�x2�t� − y2�t�

− � cos2��1 − �̄�t��x2�t − �� + r�t� + �o� ,

�H
−1dy2�t�

dt
= x2�t� ,

r�t� = ��t�x1�t − �� , �2�

for the receiver. In Eqs. �2�, � denotes the coupling strength.
It is envisioned that the signal received by system 2 �Eqs.
�2�� is the product r�t�=��t�x1�t−��, but that system 2 has no

knowledge of ��t� and x1�t−�� individually. System 2, how-
ever, has control of the quantity �̄�t�. Furthermore, we note
from Eqs. �2� that the coupled system admits a synchronous
solution if �= �̄. For the case of time independent �=�o,
numerical simulations and experimental observations show
that the synchronous solution is stable if 0.45��o�1.49.
Thus, if the receiver quantity �̄�t� can correctly match ��t�,
and if the latter varied sufficiently slowly in time, then the
system can be maintained in a synchronous state through
time variation in � over the above values.

In our experiments, the optical output of the electro-optic
modulator P1 is transmitted to the receiver loop through a
fiber-optic link. The received optical signal is detected and
filtered at the receiver to build x1�t−��. The communication
channel is subject to simulated time variation modeled by a
time-varying coupling strength �=��t�, so that the
received signal used in the coupling term of Eq. �2� is
r�t�=��t�x1�t−��. Here, we assume the variation in the cou-
pling strength occurs very slowly compared to the dynamics

(a) Experiment

(b) Simulation

t (ms)
0 100–100–200–300–400 200 300 400 500

500
t (ms)

0 100–100–200–300–400

–500

–500 200 300 400

κ(t), κ(t)

κ(t)P1(t)

0.0

1.0

0.0
–0.5

0.5

0.7

1.0

1.3

κ(t)
κ(t)

κ(t)
κ(t)

Adaptive scheme OFF Adaptive scheme ON

Adaptive scheme OFF Adaptive scheme ON

Po

P1(t) – P2(t)

Po

κ(t), κ(t)

κ(t)P1(t)

0.0

1.0

0.0
–0.5

0.5

1.0

0.7

1.3

Po

P1(t) – P2(t)

Po

FIG. 2. �Color online� Success of adaptive strategy for tracking
and synchronization in the presence of a time-varying coupling
strength. Before time t=0, the adaptive synchronization algorithm
is disabled. During this period, ��t� fluctuates between 0.83 and
1.13 while the coupling strength estimate �̄ is held constant at 0.8.
After t=0 �indicated by the dashed vertical line�, the adaptive algo-
rithm is turned on and a real-time estimate of the channel modula-
tion is constructed from measurements performed entirely at the
receiver. �a� Results from experiment. The top panel shows the
received optical signal ��t�P1�t� and the error signal �P1�t�− P2�t��,
both normalized to the optical power Po entering the electro-optic
modulator. The bottom panel shows the time dependence of the
coupling strength ��t� and its real-time estimate �̄�t� obtained once
the adaptive algorithm is switched on. �b� Corresponding results
from numerical simulations. The solid vertical lines indicate the
four intervals of time we present in more detail in Fig. 3.
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of each feedback loop, i.e., the time scale for variation in ��t�
is substantially longer than that for x1,2. Our goal is to use the
available information r�t�, to dynamically construct an esti-
mate of the coupling ��t� by adaptively changing �̄�t� in a
manner that maintains synchrony.

III. ADAPTIVE STRATEGY

We implement the adaptive strategy proposed by Sorren-
tino and Ott �10�. The scheme relies on the minimization of
a “potential” �, defined as the exponentially weighted mov-
ing average of the synchronization error,

��t� =
1

�o
	

−	

t

��̄�t��x2�t� − �� − r�t���2exp�− �t − t��/�o�dt�.

�3�

Minimizing Eq. �3� with respect to �̄, we arrive at the fol-
lowing equations that are then solved to construct of the
estimate �̄�t�=N�t� /D�t� of the channel time-variation ��t�,
where N�t� and D�t� follow

�o
dN�t�

dt
+ N�t� = r�t�x2�t − �� ,

�o
dD�t�

dt
+ D�t� = x2

2�t − �� . �4�

Note that N�t� and D�t� in Eqs. �4� are simply the low-pass
filtered versions of the “signals” on the right hand sides of
these equations, and �o denotes the time constant of the filter.
For the success of the adaptive algorithm, it is important to
choose �o to be large compared to the dynamical time scale
of the chaotic oscillators, but small compared to the time
scale on which ��t� varies. In our experiments and simula-
tions, we choose �o=0.81 ms.

IV. RESULTS AND DISCUSSION

The results from the application of the adaptive synchro-
nization technique are presented in Fig. 2. We show the re-
ceived optical signal ��t�P1�t� and the difference error signal
�P1− P2� both normalized to the input optical power Po. The
received signal reflects the long time-scale coupling strength
variations as a result of the simulated environmental time
fluctuations in ��t�. The time variation in ��t� was accom-
plished by inserting into the coupling channel an electro-
optic intensity modulator driven by an arbitrary waveform
generator. The coupling strength ��t� varies between 0.83
and 1.13 with an average value of 0.98 and a repetition pe-
riod of 500 ms. Before t=0, the adaptive synchronization
technique is disabled and �̄ is held fixed at 0.8. During this
period, the synchrony between the two feedback loops is
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FIG. 3. �Color online� Synchronization of transmitter and re-
ceiver dynamics using adaptive scheme. �a� The left and right pan-
els are 10-ms time traces of the internal dynamics P1�t� and P2�t�
and the error signal �P1�t�− P2�t�� corresponding to the windows in
Fig. 2�a�. Under the same coupling conditions, the two feedback
loops only synchronize when the adaptive strategy is enabled. �b�
Results from simulations corresponding to the windows in Fig.
2�b�.
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FIG. 4. �Color online� �a� Synchronization error 
 as a function
of modulation frequency fmod for a modulation depth �=0.40. The
experimentally measured synchronization error when the adaptive
strategy is ON �solid line� is lower than when the adaptive strategy
is OFF �dotted line�. Numerical simulations �dashed line� result in a
smaller 
 compared to the experimental observations. �b� Tracking
measure � is defined as the ratio of the Fourier amplitude of the
receiver’s tracking estimate �̄�t� at frequency fmod to the Fourier
amplitude of an imposed channel modulation. Experimental track-
ing measure for modulation amplitudes �=0.1,0.2, and 0.4 are
shown.
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poor, as shown by the difference signal �P1− P2�. After t=0,
the adaptive algorithm is switched on. Now, the receiver
forms a real-time estimate of the time-dependent coupling
and dynamically compensates to maintain synchrony. The
difference signal is seen to reduce in amplitude showing suc-
cessful synchronization of the receiver to the transmitter dy-
namics. The estimate of the channel variation �̄�t� is also
shown along with the channel variations ��t�. Corresponding
results from numerical simulations are also presented. Figure
3 shows two 10-ms time windows, one where the adaptive
scheme is off �−440 ms� t�−430 ms� and one where the
adaptive scheme is on �60 ms� t�70 ms�, to detail the dy-
namics of the feedback loops occurring at submillisecond
time scales.

The adaptive synchronization technique successfully
tracks slowly varying coupling strength time-variations and
compensates for them to maintain synchrony between the
transmitter and the receiver systems. To evaluate the
efficiency of the adaptive algorithm, we impose a
coupling strength time-variation in the form
��t�=0.8�1+� sin�2�fmodt�� and measure a normalized syn-
chronization error, 
= 
�P1− P2�2�1/2 / Po, for different values
of fmod. Figure 4�a� shows the experimentally measured syn-
chronization error for a nominal modulation depth �=0.4 as
a function of the modulation frequency, comparing the case
when the adaptive strategy is enabled �solid line� to when it
is disabled �dotted line�. At all frequencies observed, the
adaptive technique yields an improvement in the degree of
synchronization compared to the uncontrolled case, with the
greatest improvement seen at lower frequencies. Numerical
simulations �lower dashed line� of the adaptive synchroniza-
tion method show the theoretically possible improvement in
synchronization. These simulations do not include noise and

parameter mismatches; incorporating these nonideal effects
�not shown� allows us to improve the correspondence be-
tween the simulation results and experimental observations.
We have also found that with the random channel variations
we have simulated, a simple envelope detection scheme with
a low-pass filter to estimate �̄�t� fails to produce synchrony.

The degree to which the receiver loop tracks coupling
strength variations is quantified by a tracking measure, �

= ��̃̄�fmod� / �̃�fmod��, defined as the ratio of the Fourier ampli-
tudes at the frequency fmod of the tracking estimate �̄ to that
of �. Figure 4�b� shows the experimentally measured track-
ing measure as a function of the channel time-variation fre-
quency fmod obtained using a vector network analyzer �Agi-
lent 4395A�. Results are shown for various modulation
depths, �=0.1,0.2,0.4. For large modulations, the tracking
measure is seen to start deteriorating at a lower frequency
compared to the case when the modulation is small.

To summarize, the synchronization of chaotic systems
sensitively depends on the coupling strength, which may be
perturbed by environmental changes. We experimentally
demonstrate an adaptive algorithm to maintain synchrony be-
tween chaotic systems when the coupling channel variations
are unknown but slow in comparison to the chaotic dynam-
ics. In addition to keeping the chaotic systems synchronized,
the scheme also allows us to estimate the time-varying cou-
pling strength. We note that by using faster electronics, the
system can easily be scaled to allow the adaptive scheme to
track faster channel variations.
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