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Abstract – In this letter, we perform a sensitivity analysis on the master stability function
approach for the synchronization of networks of coupled dynamical systems. More specifically, we
analyze the linear stability of a nearly synchronized solution for a network of coupled dynamical
systems, for which the individual dynamics and output functions of each unit are approximately
identical and the sums of the entries in the rows of the coupling matrix slightly deviate from zero.
The motivation for this parametric study comes from experimental instances of synchronization
in human-made or natural settings, where ideal conditions are difficult to observe.
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Introduction. – Synchronization of networks of
coupled dynamical systems has been the subject of inten-
sive research, see for example the reviews [1–4]. Chaos
synchronization of networked dynamical systems finds
applications in secure communication [5–7], system iden-
tification [8–11], data assimilation [12,13], sensors [14],
information encoding and transmission [15,16], and
multiplexing [17]. In this framework, the master stability
function analysis provides a necessary and sufficient condi-
tion for the linear stability of the synchronous solution.
However, most of the research on this approach focuses
on ideal conditions, which are difficult to implement in
experiments.
We consider a typical experimental scenario for a set

of dynamical systems that are coupled through a network
to achieve synchronization. We assume that each of the
elements which constitute the experiment is selected to
reflect certain nominal characteristics; yet, we allow these
components to be affected by small mismatches from their
nominal values. We consider a wide range of possible
deviations from nominal operating conditions that may
affect simultaneously the individual units’ dynamics, the
individual units’ output functions, and the coupling gains
among the systems. Another motivation for the proposed
analysis is the study of the collective behavior of biological
groups, where individuals are generally different in nature

(a)E-mail: fsorrent@unina.it

and their couplings are typically affected by fluctuations
about an average or nominal value; see for example [18].
We consider the following equations of motion for a set

of coupled chaotic systems in their nominal conditions:

ẋi(t) = F (xi(t))+σ

N
∑

j=1

ANOMij H(xj(t)), i= 1, 2, . . . , N,

(1)

where xi ∈R
n is the n-dimensional vector describing

the state of node i, F :Rn→Rn governs the uncoupled
dynamics of node i, H :Rn→Rn is a vectorial output
function, σ is a scalar gain describing the overall coupling
strength, and N is the number of nodes in the network.
The network is defined by the matrix ANOM = {ANOMij },
describing the coupling from node j to node i. We refer
to equation set (1) as nominal, as we assume that it
corresponds to a given experimental design. A sufficient
condition for the existence of a synchronized solution,

x1(t) = x2(t) = . . .= xN (t) = xs(t), (2)

is that
∑

j

ANOMij = 0, i= 1, . . . , N, (3)

that is, all the row-sums1 of the matrix ANOM are equal
to zero. In case condition (3) is satisfied, a synchronized

1In what follows, we sometimes refer to the row-sums of a matrix,
indicating with this terminology the sums of the entries along the
rows of the matrix. We further comment that the analysis stays
unaltered if the right-hand side of (3) equals a constant.
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solution xs(t) exists that satisfies

ẋs(t) = F (xs(t)). (4)

We use ℓNOM1 , . . . , ℓNOMN to identify the eigenvalues
of the matrix ANOM , which are in general complex
numbers. Note that (3) implies that ANOM has one
eigenvalue, ℓNOM1 = 0, with associated right eigenvector
1N = [1, 1, . . . , 1].
The linear stability of (2) can be assessed by using

the master stability function [19,20]. Within this frame-
work, the synchronous solution is stable if the maxi-
mum Lyapunov exponent associated with the parametric
equation

γ̇(t) = [DF (xs(t))+ cDH(xs(t))]γ(t) (5)

is negative for every c= σℓNOMk , k= 2, . . . , N , where γ is
an n-dimensional vector. Then it is possible to associate
a master stability function to eq. (5), which yields the
maximum Lyapunov exponent of (5) as a function of the
parameter c. Thus stability of the synchronized solution
can be assessed for any given network described by eqs. (1)
by verifying that the corresponding eigenvalues σℓNOMk ,
k= 2, . . . , N , are within the region of the complex plane
for which the master stability function is negative.

Problem statement. – The assumptions underlying
the set of equations (1) are that
i) the individual units are all described by the same

dynamics ẋi(t) = F (xi(t));
ii) the systems’ outputs are all described by the same

function H;
iii) the sums of the rows of the matrix ANOM are

all zero, that is, condition (3) is verified at each node
i= 1, . . . , N .
While assumptions i), ii), and iii) can be easily repro-

duced in a numerical simulation, their practical implemen-
tation in experiments is challenging. Qualitatively good
satisfaction of i), ii), and iii) in experimental instances
of synchronization often requires fine tuning [21–28].
In [27–29], an adaptive strategy to dynamically preserve
synchronization in the presence of slow a priori unknown
time variations of the couplings is proposed. Though such
strategy is able to preserve condition iii) in the presence
of external perturbations, the row-sums of the coupling
matrix are typically nonzero over the time scale of the
adaptation.
In [30,31], assumption i) is removed and the effect of

small mismatch of the individual units is considered. That
is, these works consider the case where F in eq. (1)
is replaced by Fi and the difference between F and
Fi is small. In this letter, we extend the considerations
of [30,31] to simultaneously allow for deviations from
the exact satisfaction of all three of the assumptions
i), ii), and iii). Namely, we assume that i), ii), and
iii) are nominal design conditions, which might not be
exactly reproduced in an experiment. We show that if

all the mismatches are small as compared to the nominal
conditions, the linear stability of the nearly synchronized
solution can be studied by using an extended master
stability function. Moreover, when the nearly synchronous
evolution is stable, the mismatches introduce forcing terms
in the parametric equation that maintain the network in
a state of approximate synchronization.
To take into account approximate, rather than exact

satisfaction of i), ii), and iii), we rewrite the network
equations in the form

ẋi(t) = F (xi(t),mi)+σ

N
∑

j=1

AijH(xj(t), pj), (6)

i= 1, 2, . . . , N , where Aij represents the coupling from
node j to node i, mi is a parameter used to identify
variations of the dynamics at each node i, and pi is a
parameter of the output function of each node i. We
assume that mi = m̄+ δmi, where m̄=N

−1
∑

imi and
δmi is a small mismatch. Similarly, we write pi = p̄+
δpi, where p̄=N

−1
∑

i pi and δpi is a small mismatch.
Note that by construction

∑

i δmi = 0 and
∑

i δpi = 0.
The elements Aij ’s represent imperfect realizations of the
nominal couplings ANOMij ’s, that is, Aij =A

NOM
ij + δAij ,

i, j = 1, . . . , N , where δAij is a small mismatch. In general,
in the presence of deviations of the Aij ’s from their
nominal values, it is not possible to write a condition
equivalent to (3) and thus to extend directly the master
stability function formalism. For small δAij ’s, we can write

∑

j

Aij =
∑

j

δAij = δā+ δai, (7)

where
δā=N−1

∑

i,j

Aij =N
−1
∑

i,j

δAij (8)

is the average sum of the rows of the matrix A and

δai =

⎛

⎝

∑

j

δAij

⎞

⎠− δā=

⎛

⎝

∑

j

δAij

⎞

⎠−N−1
∑

ij

δAij

(9)
is a small deviation. The deviations δai are calculated
with respect to the average row-sum δā, hence they have
zero sum, that is,

∑

j δaj = 0. By using condition (7) in
equation set (6), we obtain

ẋi(t) = F (xi(t),mi)+σ
∑

j

A′ijH(xj(t), pj)

+σδaiH(xi(t), pi), (10)

i= 1, 2, . . . , N , where we have introduced the matrix A′

defined by

A′ij =

{

Aij , if j �= i,
Aii− δai, if j = i.

(11)

By construction, the matrix A′ = {A′ij} is such that the
sums of its rows are constant and equal to δā. We note
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that by setting to zero all the mismatches δmi, δpi, and
δai in (10), a synchronized solution exists for the set of
equations in (10) of the form

˙̃xs = F (x̃s, m̄)+σδāH(x̃s, p̄). (12)

Extended master stability function. – We intro-
duce the average trajectory x̄(t) =N−1

∑

k xk(t) that
satisfies the following average dynamics:

˙̄x(t) = N−1

⎡

⎣

∑

k

F (xk(t),mk)+σ
∑

k,j

A′kjH(xj(t), pj)

+σ
∑

k

δakH(xk(t), pk)

]

. (13)

Since the quantities δai, δpi, and δmi are small, we
expect the individual trajectories xi(t) to be close to
the average trajectory x̄(t), that is, ‖xi(t)− x̄(t)‖� k

∗ for
all times and some small k∗ > 0. We define the variation
with respect to the average trajectories as δxi(t) = (xi(t)−
x̄(t)). By expanding both (6) and (13) to first order about
(x̄(t), m̄, p̄), we obtain

δẋi(t) = DFx(x̄(t), m̄)δxi(t)+DFm(x̄(t), m̄)δmi

+σDHx(x̄(t), p̄)
∑

j

(

A′ij − bj
)

δxj(t)

+σDHp(x̄(t), p̄)
∑

j

(

A′ij − bj
)

δpj

+σH(x̄(t), p̄)δai, (14)

i= 1, . . . , N , where bj =N
−1
∑

k A
′

kj , that is, bj repre-
sents the sum of the entries over column j of the matrix
A′ divided by N , for j = 1, . . . , N . We have indicated with
DFx and DHx the partial derivative of the functions F
and H with respect to x, with DFm the partial deriva-
tive of the function F with respect to m, and with DHp
the partial derivative of the function H with respect to p.
To obtain (14), we have used the properties

∑

j δxj = 0,
∑

j δaj = 0,
∑

j δmj = 0,
∑

j δpj = 0,
∑

j bj = δā, and we
have discarded second-order terms in all the variations.
We define ℓ′1, ℓ

′

2, . . . , ℓ
′

N as the eigenvalues of the matrix
A′. We note that since the row-sums of the matrix A′

are equal to δā, the matrix A′ has one eigenvalue ℓ′1 = δā,
with associated right eigenvector 1N . Now, we consider the
matrix Ã= {Ãij}, where Ãij = (A

′

ij − bj), and we look for

the solutions of the eigenvalue equation Ãv̄i = λiv̄i. We
observe that the matrix Ã has the property that both the
sums of its rows and its columns are equal zero. Thus
v̄1 = 1N is still a right eigenvector for the matrix Ã, with
associated eigenvalue λ1 = 0. Moreover, w̄1 = 1N is also
the left eigenvector of the matrix Ã, associated with the
eigenvalue 0. The remaining eigenvalues of the matrix
Ã are λi = ℓ

′

i for i= 2, . . . , N [31]. In other words, the
matrices A′ and Ã have the same spectrum except for the
eigenvalue associated with the right eigenvector v̄1 = 1N .
As discussed in what follows, the eigenvalues λ2, . . . , λN
control the stability of the nearly synchronous solution.

Equations (14) can be rewritten as

δẊ(t) = [IN ⊗DFx(x̄(t), m̄)+σÃ⊗DHx(x̄(t), p̄)]δX(t)

+ [IN ⊗DFm(x̄(t), m̄)]δM

+σ[Ã⊗DHp(x̄(t), p̄)]δP

+σ[IN ⊗H(x̄(t), p̄)]δA, (15)

where δX(t) = [δx1(t)
T , δx2(t)

T , . . . , δxN (t)
T ]T , δM =

[δm1, δm2, . . . , δmN ]
T , δP = [δp1, δp2, . . . , δpN ]

T , δA=
[δa1, δa2, . . . , δaN ]

T , and the symbol ⊗ indicates direct
product or Kronecker product.
Following [20] and assuming that the matrix Ã

is diagonalizable, we write, Ã= V ΛW , where Λ=
diag(λ1, λ2, . . ., λN ), V is a matrix whose columns are
the right eigenvectors of the matrix Ã, and W = V −1.
Premultiplying (15) by W ⊗ In, we obtain

Q̇(t) = [IN ⊗DFx(x̄(t), m̄)+σΛ⊗DHx(x̄(t), p̄)]Q(t)

+ [W ⊗DFm(x̄(t), m̄)]δM

+σ[λiW ⊗DHp(x̄(t), p̄)]δP

+σ[W ⊗H(x̄(t), p̄)]δA, (16)

where Q(t) = (W ⊗ In)δX(t). We note that both matrices
IN and Λ in the homogeneous part of eq. (16) are diagonal
matrices. Thus eq. (16) can be decomposed into N blocks
of the form

q̇i(t) = [DFx(x̄(t), m̄)+σλiDHx(x̄(t), p̄)]qi(t)

+
∑

j

WijδmjDFm(x̄(t), m̄)

+σλi
∑

j

WijδpjDHp(x̄(t), p̄)

+σ
∑

j

WijδajH(x̄(t)), (17)

i= 1, . . . , N . We comment that the homogeneous part of
each block in (17) is independent of the other blocks. For
i= 1, the variational equation (17) yields q1(t) = 0 since
∑N

i=1 δxi(t) = 0 and 1N is a left eigenvector. Thus we note
that the component of the evolution along the direction
x1 = x2 = . . .= xN is not affected by the mismatches δmi,
δpi, and δai. Stability of the nearly synchronized solution
is controlled by perturbations in the remaining directions,
q2, . . . , qN . Following [20,31], it is possible to associate the
following parametric equation to eq. (17):

ż(t) = [DFx(x̄(t), m̄)+ωDHx(x̄(t), p̄)]z(t)

+ ǫDFm(x̄(t), m̄)+ ζDHp(x̄(t), p̄)+ ηH(x̄(t)),

(18)

which corresponds to equation set (17) upon setting z=qi,
ω= σλi, ǫ=

∑

jWijδmj , ζ = σλi
∑

jWijδpj , and η=
σ
∑

jWijδaj , for i= 2, . . . , N .
In order to assess the linear stability of the nearly-

synchronous solution, eq. (18) needs to be tested for the
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set of eigenvalues λ2, . . . , λN . If the Lyapunov exponents
associated with the homogeneous part of eq. (18), i=
2, . . . , N , are negative, the nearly synchronous solution is
stable. In this case, the forcing terms on the right-hand
side of eq. (18), i= 2, . . . , N , can be considered as inputs
to a stable system. It is then possible to associate an
extended master stability function M(ω, ǫ, ζ, η), defined

as limτ→∞

√

τ−1
∫ τ

0
‖z(t)‖2dt to eq. (18), which yields the

asymptotic norm of the time average of z as a function
of the tuple (ω, ǫ, ζ, η). However, stability of the nearly
synchronous solution depends on the homogeneous part
of (18), that is, it depends on ω, while it is independent of
ǫ, ζ, and η. We note that for δai = 0, δmi = 0, and δpi = 0
with i= 1, . . . , N , the parametric equation (18) reduces
to (5), which corresponds to the ideal case where all the
parameters are equal to their nominal values.
Moreover, following [31], in the case that the master

stability function is asymptotically bounded and ω is fixed,
we have that M(ω, ǫ, ζ, η) scales linearly with respect to
ǫ, ζ, and η, that is

M(ω, ǫ, ζ, η)≃ cǫ(ω)|ǫ|+ cζ(ω)|ζ|+ cη(ω)|η|, (19)

where the coefficients cǫ, cη, and cζ are functions of ω.
We comment that the extended master stability func-

tion depends on the eigenvalues of the perturbed matrix
A′ and not on those of the nominal matrix ANOM .
The matrix A′ can be considered a perturbed version of
the nominal matrix ANOM , A′ =ANOM +Δ, where the
perturbation matrix Δ= {Δij}= {δAij − δ

ij(
∑

j δAij −

a)} and δij indicates the Kronecker delta, i, j = 1, . . . , N .
Note the sums of the rows of Δ are equal to δā. The
eigenvalues of the perturbed matrix A′ can be computed
from the spectral properties of ANOM . By using classical
perturbation theory [32] and assuming that the eigenval-
ues of the matrix ANOM are all distinct, we find

λi ≃ ℓ
NOM
i +

ŵTi Δv̂i
ŵTi v̂i

, i= 2, . . ., N, (20)

where ŵi and v̂i are the left and right eigenvectors asso-
ciated with the eigenvalues ℓNOMi of the matrix ANOM ,
respectively. Equation (20) shows that the deviations
of the relevant eigenvalues from their nominal values
are of the same order of the perturbations Δij on the
couplings. We also comment that eq. (20) predicts that
ℓ′1 ≃ (ŵ

T
1 Δ1N )/(ŵ

T
1 1N ) = a, since ℓ

′

1 = a by construction.
Similar arguments can be used to estimate the left eigen-
vectors of Ã from the spectral properties of ANOM .
The main result of our analysis is that stability of

the nearly synchronous evolution for the system (6) can
be assessed by using a master stability function, which
depends on the eigenvalues of an appropriately modified
coupling matrix A′. Though in a practical situation it is
not feasible to exactly calculate these eigenvalues, for small
deviations of the couplings from their nominal values they
differ from their nominal values ℓNOMi by a small quantity

of the same order of the Δ. Moreover, the mismatches
in the individual functions F and H, along with the
deviations in the row-sums of the coupling matrix A,
introduce forcing terms in eq. (18) through the coefficients
ǫ, ζ, and η. Such forcing terms maintain the network in a
state of approximate synchronization.
Following [31], in case the matrix Ã has an orthonormal

basis of eigenvectors, that is, it is symmetric, we can write

E ≡ lim
τ→∞

τ−1
∫ τ

0

N
∑

i

‖δxi(t)‖
2dt=

N
∑

i=2

M2(ωi, ǫi, ζi, ηi).

(21)
We note that E is a quantity of physical interest, as
it represents the time average sum, over all the coupled
systems of the distances ‖δxi(t)‖ from the average trajec-
tory x̄(t). One of the advantages of this approach is that,
by computing the master stability function once, E can
be estimated for any network topology that approximately
satisfies the constant–row-sum condition.
As pointed out in [31], a complication with this

approach is that eq. (18) depends on x̄(t), which is an
averaged trajectory over all the systems in the network. In
a large network, calculating x̄(t) may be computationally
expensive, as it requires full integration of N individual
systems, see eq. (13). However, for practical purposes,
x̄(t) in (18) can be replaced by the individual dynamics
x̃s(t) in (12), which depends explicitly on m̄, p̄, and
δā. We comment that, unless precise knowledge of the
characteristics of all the individual units and of their
couplings is available, it is difficult to exactly compute
m̄, p̄, and δā. Nevertheless, a priori knowledge of the
statistical properties of the coupled systems can be used
to infer the average parameters. For example, if mi, pi
and ai, with i= 1, . . . , N are taken as independent and
identically distributed random variables, drawn from
distributions having mean corresponding to their nominal
values, and finite variance, the central-limit theorem
states that m̄, p̄, and δā approach their nominal values as
the number of nodes increases.

Numerical simulation. – We use the algorithm
in [33] to generate a scale-free network of N = 100 nodes
with average degree equal to 30 and exponent of the
power law degree distribution equal to 3. For each pair of
nodes i, j = 1, . . . , N , j �= i, ANOMij =ANOMji = 1 if nodes

i and j are connected; otherwise, ANOMij =ANOMji = 0.

We set ANOMii =−
∑

j A
NOM
ij , which guarantees that

the row-sums of the matrix ANOM are equal to zero.
Moreover, as the matrix ANOM is symmetric, it is diag-
onalizable, its eigenvalues are real, and the eigenvectors
can be taken to be orthonormal. We find that ℓ2 = 12.7018
and ℓN = 86.0531, where we set ℓ1 � ℓ2 . . .� ℓN .
We consider that Aij =A

NOM
ij (1+ ςaρij), for

i, j = 1, . . . , N , where ρij = ρji is a random number
drawn from a standard normal distribution and ςa is
a scalar. Upon this selection, the matrix A′ in (11)
is symmetric; the matrix Ã is also symmetric, since

50002-p4
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Fig. 1: (Colour on-line) Triangles, diamonds, and squares
represent the error measure E vs. the coupling strength σ.
Triangles are used for the case in which ςa = ςm = ςp = 0.
Diamonds are used for the case in which ςa = 10

−4 and ςm =
ςp = 0. Squares are used for the case in which ςa = 10

−4 and
ςm = ςp = 5× 10

−4. The vertical dashed lines delimit the range
of stability predicted by the master stability function. The
symbols × (+) refer to

∑N

i=2M(ωi, ǫi, ζi, ηi)
2 for ςa = 10

−4

and ςm = ςp = 0 (ςa = 10
−4 and ςm = ςp = 5× 10

−4), computed
using eq. (19).

bj = δā/N for j = 1, . . . , N . For ςa = 10
−4, we obtain

λ2 = 12.7007 and λN = 86.0529. This is in agreement with
eq. (20), as we find that |λi− ℓi| is on average of the same
order of magnitude of the deviations on the couplings2.
We perform a numerical experiment for a set of nomi-

nally identical Rössler oscillators that are affected by
mismatches in both their dynamics and output functions
and are coupled by the scale free network, described by
the matrix A. In this case, the equations of motion are

ẋi1(t) =−xi2(t)−xi3(t)+σ
∑

j

Aij(xj1(t)+ pj),

ẋi2(t) = xi1(t)+mixi2(t),

ẋi3(t) = 0.2+ (xi1(t)− 7)xi3(t),

(22)

i= 1, . . . , N , where the state vector of oscillator i is xi =
[xi1, xi2, xi3]

T . The parameters pj are random numbers
drawn from a Gaussian distribution with mean equal to
zero and standard deviation ςp, and the parameters mi
are random numbers drawn from a Gaussian distribution
with mean value equal to 0.2 and standard deviation ςm.
In fig. 1, we plot the error measure E, defined in (21),

vs. the coupling strength σ. Simulations are run for a total
time duration T = 3000, which is considerably larger than
the typical time scale of an oscillation for an uncoupled
Rossler oscillators, that is 2π; time averages are taken over
the time interval [2700, 3000].
From the direct numerical integration of eqs. (12) and

(18) with m̄= 0.2, p̄= 0, δā= 0, and ǫ= ζ = η= 0, we find

2We have also performed numerical experiments for ρij �= ρji and
we have found that, for small values of ςa, the eigenvalues λi’s are
still real.
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Fig. 2: cǫ, cζ , and cη vs. ω.

that the master stability function converges to zero in
the range 0.143� ω� 4.40, which for our choice of the
matrix A, corresponds to stability in the range 0.0113�
σ� 0.0511. This range is delimited by the vertical dashed
lines in fig. 1, which shows good agreement with our
computations of the full nonlinear system (22). Figure 1
illustrates that the range of stability is affected neither
by the presence of small deviations from the nominal
couplings nor from small mismatches in the individual
oscillators’ parameters. This is because the eigenvalues
λi are indistinguishable from the eigenvalues ℓi, for i= 2
or N to the degree of accuracy of the simulation shown
in the figure. However, for σ inside the range of stabil-
ity, the value attained by E depends on the values of
δai, δmi, and δpi. Figure 2 shows cǫ, cζ , and cη vs. ω.
With this information, eq. (19) provides an estimate of
the master stability function for any tuple (ω, ǫ, ζ, η). We
use eq. (19) along with the data plotted in fig. 2 to calcu-
late the master stability function M. This is shown for
comparison in fig. 1, where the symbols × (+) are used to

plot
∑N

i=2M(ωi, ǫi, ζi, ηi)
2 for ςa = 10

−4 and ςm = ςp = 0
(ςa = 10

−4 and ςm = ςp = 5× 10
−4). Poorer agreement is

observed for values of σ slightly above the lower threshold
for stability of 0.0113 (not shown), which corresponds to
a so-called bubbling region, as further discusses below3.

Conclusions. – The master stability function analy-
sis [19,20] provides a necessary and sufficient condition for
linear stability of the synchronous solution for an arbitrary
network of coupled identical systems. An extension of this
approach for networks of groups, where the dynamics of
nodes within a group are the same but are different for
nodes in distinct groups, is proposed in [34]. In addition,
a master stability function for networks in which each unit
independently implements an adaptive strategy to main-
tain synchronization is presented in [35]. The analysis of

3Numerical experiments performed by replacing δmi, δpj , and
δAij ’s with random numbers from the same distributions and
λ1, . . . , λN and W with the eigenvalues and eigenvectors of the
original matrix ANOM show good agreement with the results
in fig. 1.
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nearly identical coupled dynamical systems is considered
in [30,31]. For this case, which is of practical relevance in
experimental instances of synchronization and in biolog-
ical systems, it is shown that a master stability function
approach is applicable [31].
In this letter, we have proposed a sensitivity analysis to

address synchronization in the presence of a broad range
of deviations from nominal conditions. In particular, we
have taken into consideration simultaneous small devia-
tions in the dynamics of individual units, the output func-
tions of the individual units, and the coupling among the
systems. We have shown that the master stability function
formalism can be extended to this general scenario and
that stability of the nearly synchronous evolution depends
on the eigenvalues of an appropriately modified coupling
matrix. Our analysis is motivated by inherent practical
challenges in implementing ideal conditions in experimen-
tal analysis of synchronization. For example, our approach
can be directly applied to synchronization of nearly iden-
tical units whose interconnections yield to approximately
zero–row-sum coupling matrix. In this case, the proposed
master stability function can be used to estimate the
conditions under which the nearly synchronous evolution
is stable and in case of stability, the approach can be used
to quantify the overall synchronization error.
Noise or small mismatches in the parameters of the

individual systems can be responsible for the onset of
bubbling [30,35,36], that is, rare intermittent large devi-
ations from synchronization. We expect bubbling also
to arise in the case of approximate satisfaction of the
zero–row-sum condition; in this case, the master stability
function, introduced in this letter, can be used to iden-
tify stable, unstable, and bubbling regions in the relevant
parameter space, see for example [35].
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