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Cluster synchronization and isolated
desynchronization in complex networks
with symmetries
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Synchronization is of central importance in power distribution, telecommunication, neuronal
and biological networks. Many networks are observed to produce patterns of synchronized
clusters, but it has been difficult to predict these clusters or understand the conditions under
which they form. Here we present a new framework and develop techniques for the analysis
of network dynamics that shows the connection between network symmetries and cluster
formation. The connection between symmetries and cluster synchronization is experimentally
confirmed in the context of real networks with heterogeneities and noise using an electro-
optic network. We experimentally observe and theoretically predict a surprising phenomenon
in which some clusters lose synchrony without disturbing the others. Our analysis shows that
such behaviour will occur in a wide variety of networks and node dynamics. The results could
guide the design of new power grid systems or lead to new understanding of the dynamical
behaviour of networks ranging from neural to social.
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ynchronization in complex networks is essential to the

proper functioning of a wide variety of natural and

engineered systems, ranging from electric power grids to
neural networks!. Global synchronization, in which all nodes
evolve in unison, is a well-studied effect, the conditions for which
are often related to the network structure through the master
stability function?. Equally important, and perhaps more
ordinary, is partial or cluster synchronization (CS), in which
patterns or sets of synchronized elements emerge’. Recent work
on CS has been restricted to networks where the synchronization
pattern is induced either by tailoring the network geometry or by
the intentional introduction of heterogeneity in the time delays or
node dynamics*!!. These anecdotal studies illustrate the
interesting types of CS that can occur, and suggest a broader
relationship between the network structure and synchronization
patterns. Recent studies have begun to draw a connection
between network symmetry and CS, although all have
considered simgle networks where the symmetries are apparent
by inspection!?~14, More in-depth studies have been done
involving bifurcation phenomena and synchronization in ring
and point symmetry networks!>!6. Finally, a form of CS can
occur in situations where input and output couplings match in a
cluster, but there is no symmetry!®17,

Here we address the more common case where the intrinsic
network symmetries are neither intentionally produced nor easily
discerned. We present a comprehensive treatment of CS, which
uses the tools of computational group theory to reveal the hidden
symmetries of networks and predict the patterns of synchroniza-
tion that can arise. We use irreducible group representations to
find a block diagonalization of the variational equations that can
predict the stability of the clusters. We further establish and
observe a generic symmetry-breaking bifurcation termed isolated
desynchronization, in which one or more clusters lose synchrony
while the remaining clusters stay synchronized. The analytical
results are confirmed through experimental measurements in a
spatiotemporal electro-optic network. By statistically analysing
the symmetries of several types of networks, as well as electric
power distribution networks, we argue that symmetries,
clusters and isolated desynchronization can occur in many types
of complex networks and are often found concurrently.
Throughout the text, we use the abbreviation ID for isolated
desynchronization.

Results
The dynamical equations. A set of general dynamical equations
to describe a network of N-coupled identical oscillators are

%i(t) = F(xi(t)) +o ) _AjH(x), i=1,--N, (1)
J

where x; is the n-dimensional state vector of the ith oscillator,
F describes the dynamics of each oscillator, A is a coupling matrix
that describes the connectivity of the network, ¢ is the overall
coupling strength and H is the output function of each oscillator.
Equation (1) or its equivalent forms provide the dynamics for
many networks of oscillators, including all those in refs 1-4,6—
8,11-14. This includes some cases of time delays in the coupling
functions. As noted in ref. 1, it is only necessary for the form of
the equations of motion or, more importantly, the variational
equations to have the form of equation (1) near the synchroni-
zation manifolds. The form of equation (1) also apFlies to discrete
time systems or more general coupling schemes'®. In addition,
the same form emerges in the more general case for the
variational equations where the vector field and the coupling
combine into one function, viz. F(xi(t), {x;(t)}), where the
argument in brackets is the input of all nodes connected to
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node i, so long as the nodes are treated as having the same basic
dynamics. See ref. 18 for more explanation. Generalizations of
equation (1) have been studied in refs 5,9,10,19. The types of
natural and man-made systems, which can be modelled by
equations of the same form as equation (1), are large?®2!. These
include genetic networks, circadian networks, ecology, neuronal
networks, cortical networks, consensus problems, opinion
formation, power grids and concentration of metabolites in a
cell to name a few.

The same analysis as presented here will apply to more general
dynamics. Here, for simplicity, we take all nodes to have identical
dynamics and be bidirectionally coupled to other nodes in the
network by couplings of the same weight, that is, A;; is taken to be
the (symmetric) adjacency matrix of 1’s and 0’s with the factor of
o controlling the weight of the couplings. The vector field F can
contain self-feedback terms. Here we take the self-feedback to be
identical for all nodes.

The cases of Laplacian coupling schemes are encompassed by
our analysis as shown here. This is because the row sums are not
affected by the symmetry operations. Laplacian coupling schemes
are often used to tune the network specifically for global
synchronization, which is not our goal here. We think our
scheme may be more representative of networks that form
naturally (for example, neurons) where row sums will not
necessarily appear in the feedback. The cases of directional (non-
symmetric) coupling, variations of coupling weight and non-
identical nodes can all be handled in much the same way as
presented here, although it is not clear that those more general
cases will have as many symmetries as our simpler case.

The symmetries of the network form a (mathematical) group
G. Each symmetry g of the group can be described by a
permutation matrix R, that re-orders the nodes in a way that
leaves the dynamical equations unchanged (that is, each R,
commutes with A). The set of symmetries (or automorph-
isms)!>?2 of a network can be quite large, even for small
networks, but it can be calculated from A using widely available
discrete algebra routines’>?4. Figure la shows three graphs
generated by randomly removing 6 edges from an otherwise fully
connected 11-node network. Although the graphs appear similar
and exhibit no obvious symmetries, the first instance has no
symmetries (other than the identity permutation), while the
others have 32 and 5,760 symmetries, respectively. Thus, for even
a moderate number of nodes (11), finding the symmetries can
become impossible by inspection.

Once the symmetries are identified, the nodes of the network
can be partitioned into M clusters by finding the orbits of the
symmetry group: the disjoint sets of nodes that when all of the
symmetry operations are applied permute among one another!>.
As equation (1) is essentially unchanged by the permutations, the
dynamics of the nodes in each cluster can be equal, which is exact
synchronization. Hence, there are M synchronized motions
{s1,...,sp}, one for each cluster. In Fig. 1a, the nodes have been
coloured to show the clusters. For the first example, which has no
symmetries, the network divides into M =N trivial clusters with
one node in each. The other instances have five and three clusters,
respectively. Once the clusters are identified, equation (1) can be
linearized about a state where synchronization is assumed among
all of the nodes within each cluster. This linearized equation is the
variational equation and it determines the stability of the clusters.

The variational equations. Equation (1) is expressed in the
node coordinate system, where the subscripts i and j are identified
with enumerated nodes of the network. Beyond identifying the
symmetries and clusters, group theory also provides a
powerful way to transform the variational equations to a new
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Figure 1| Three randomly generated networks with varying amounts of
symmetry and associated coupling matrices. (a) Nodes of the same
colour are in the same synchronization cluster. The colours show the
maximal symmetry the network dynamics can have given the graph
structure. (b) A graphic showing the structure of the adjacency matrices of
each network (black squares are 1, white squares are 0). (¢) Block
diagonalization of the coupling matrices A for each network. Colours denote
the cluster, as in a. The 2 x 2 transverse block for the 32 symmetry case
comes from one of the IRRs being present in the permutation matrices
two times. The matrices for the 32 symmetry case are shown in the
Methods section.

coordinate system in which the transformed coupling matrix
B=TAT ! has a block diagonal form that matches the cluster
structure, as described below. The transformation matrix T is not
a simple node re-ordering, nor is it an eigendecomposition of A.
The process for computing T is non-trivial, and involves finding
the irreducible representations (IRRs) of the symmetry group. We
call this new coordinate system the IRR coordinate system. In the
Methods section, we show the steps necessary to obtain the
symmetries, clusters and the transformation T.

Once we have T, we can transform the variational equations as
follows. Let C,, be the set of nodes in the mth cluster with
synchronous motion s,,(f). Then, the original variational
equations about the synchronized solutions are (in vectorial
form and in the node coordinates),

ox(t) :E:E“") ® DF(sm(t))+aA§:E(”’) ® DH(s,(t)) | 9x(t),

(2)

where the Nn-dimensional vector Ox(f) = [0x;()T, 6x,(H)T....,
Sxn(®T]T and EM™ is an N-dimensional diagonal matrix such
that

m |1, if i€ Cp,
B = { 0, otherwise, (3)
i=1,...,N. Note that M E =1y, where Iy is the
N-dimensional identity matrix.

Applying T to equation (2), we arrive at the variational matrix
equation shown in equation (4), where 5(t) =T ® I,, 6x(¢), Jim) i

the transformed E™ and B is the block diagonalization of the
coupling matrix A,

A(t) = {XM:]("” ® DF(sy(t)) + 0B ® Iniﬂ’") ® DH(sw(t)) | n(t),

(4)

where we have linearized about synchronized cluster states
{81,...80}> 71(2) is the vector of variations of all nodes transformed
to the IRR coordinates, and DF and DH are the Jacobians of the
nodes’ vector field and coupling function, respectively. We note
that this analysis holds for any node dynamics, steady state,
periodic, chaotic and so on.

We can write the block diagonal B as a direct sum
@b Iy ® C, where Cis a (generally complex) p; X p; matrix
with p;=the multiplicity of the Ith IRR in the permutation
representation {Rg}, L =the number of IRRs present and db =
the dimension of the /th IRR, so that Elel d® p1 = N (refs 25,26).
For many transverse blocks, C' is a scalar, that is, p;= 1. However,
the trivial representation (I=1), which is associated with the
motion in the synchronization manifold has p; =M. Note that
the vector field F can contain a self-feedback term fix; as in the
experiment and other feedbacks are possible, for example, row
sums of A, as long as those terms commute with the Rg. In all
these cases, the B matrix will have the same structure.

Figure 1c shows the coupling matrix B in the IRR coordinate
system for the three example networks. The upper-left block is an
M x M matrix that describes the dynamics within the synchro-
nization manifold. The remaining diagonal blocks describe
motion transverse to this manifold and so are associated with
loss of synchronization. Thus, the diagonalization completely
decouples the transverse variations from the synchronization
block and partially decouples the variations among the transverse
directions. In this way the stability of the synchronized clusters
can be calculated using the separate, simpler, lower-dimensional
ODEs of the transverse blocks to see if the non-synchronous
transverse behaviour decays to zero.

An electro-optic experiment. Figure 2a shows the optical system
used to study cluster synchronization. Light from a 1,550-nm
light-emitting diode passes through a polarizing beamsplitter and
quarter wave plate, so that it is circularly polarized when it
reaches the spatial light modulator (SLM). The SLM surface
imparts a programmable spatially dependent phase shift x
between the polarization components of the reflected signal,
which is then imaged, through the polarizer, onto an infrared
camera?’. The relationship between the phase shift x applied by
the SLM and the normalized intensity Z recorded by the camera
is Z(x) =(1 — cosx)/2. The resulting image is then fed back
through a computer to control the SLM. More experimental
details are given in the Methods section.

The dynamical oscillators that form the network are realized as
square patches of pixels selected from a 32 x 32 tiling of the SLM
array. Figure 2b shows an experimentally measured camera frame
captured for 1 of the 11-node networks considered earlier in
Fig. 1 (A full video is presented in the Supplementary Movie 1).
The patches have been falsely coloured to show the cluster
structure and the links of the network are overlaid to illustrate the
connectivity. The phase shift of the ith region, x;, is updated
iteratively according to:

t+1 __
i

X mod2n  (5)

BI(xf) +0 Y AT (x) +0
j

where f is the self-feedback strength and the offset J is
introduced to suppress the trivial solution x; =0. Equation (5)
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Figure 2 | Experimental configuration. (a) Light is reflected from the SLM and passes though polarization optics thus, that the intensity of light falling
on the camera is modulated according the phase shift introduced by the SLM. Coupling and feedback are implemented by a computer. (b) An image
of the SLM recorded by the camera in this configuration. Oscillators are shaded to show which cluster they belong to, and the connectivity of the network is
indicated by superimposed grey lines. The phase shifts applied by the square regions are updated according to equation (5).

is a discrete time equivalent of equation (1). Depending on the
values of 8, ¢ and 0, equation (5) can show constant, periodic or
chaotic dynamics. There are no experimentally imposed con-
straints on the adjacency matrix A;, which makes this system an
ideal platform to explore synchronization in complex networks.

Figure 3 plots the time-averaged root-mean square synchro-
nization error for all four of the non-trivial clusters shown in
Fig. 2b, as a function of the feedback strength f, holding ¢
constant. We find qualitatively similar results if ¢ is chosen as a
bifurcation parameter with f held constant. In Fig. 3c-e, we plot
the observed intracluster deviations (x; —x') for three specific
values of § indicated by the vertical lines in Fig. 3a,b, showing
different degrees of partial synchronization that can occur,
depending on the parameters.

Details of the calculations are given in the Methods section.
Supplementary Movie 1 illustrates the experimentally recorded
network behaviour for the case of f=0.72n, where the system
clearly partitions into four synchronized clusters plus one
unsynchronized node.

Together, Fig. 3a,c-e illustrate two examples of a bifurcation
commonly seen in experiment and simulation: isolated desyn-
chronization, where one or more clusters lose stability, while all
others remain synchronized. At = 0.72x (Fig. 3¢), all four of the
clusters synchronize. At f=1.4n (Fig. 3d), the magenta cluster,
which contains four nodes, has split into two smaller clusters
of two nodes each, while the other two clusters remain
synchronized.

Between [f=0.72n and f=1.767%, two clusters, shown in
Fig. 1 as red and blue, respectively, undergo isolated desynchro-
nization together. In Fig. 3a, the synchronization error curves for
these two clusters are visually indistinguishable. The synchroni-
zation of these two clusters is intertwined: they will always either
synchronize together or not at all. Although it is not obvious from
a visual inspection of the network that the red and blue clusters
should form at all, their intertwined synchronization properties
can be understood intuitively by examining the connectivity of
the network. Each of the two nodes in the blue cluster is coupled
to exactly one node in the red cluster. If the blue cluster is not
synchronized, the red cluster cannot synchronize, because its two
nodes are receiving different input. The group analysis treats this
automatically and yields a transverse 2 x 2 block in Fig. 1c.

The isolated desynchronization bifurcations we observe are
predicted by computation of the maximum Lyapunov exponent
(MLE) of the transverse blocks of equation (4), shown in Fig. 3.
The region of stability of each cluster is predicted by a negative
MLE. Although there are four clusters in this network, there are

4

only three MLEs: the two intertwined clusters are described by a
two-dimensional block in the block-diagonalized coupling matrix
B. These stability calculations reveal the same bifurcations as seen
in the experiment.

Subgroup decomposition and isolated desynchronization. The
existence of isolated desynchronizations in the network experi-
ments raises several questions. As the network is connected why
doesn’t the desynchronization pull other clusters out of sync?
What is the relation of ID to cluster structure and network
symmetry? Is ID a phenomenon that is common to many net-
works? We provide answers to all these questions using geometric
decomposition of a group, which was developed in refs 28,29.
This technique enables a finite group to be written as a direct
product of subgroups G ="H; x ... x Hy, where V is the number of
subgroups and all the elements in one subgroup commute with all
the elements in any other subgroup. This means that the set of
nodes permuted by one subgroup is disjoint from the set of nodes
permuted by any other subgroup. Then, each cluster (say, C;) is
permuted only by one of the subgroups (say, Hy), but not by any
others. There can be several clusters permuted by one subgroup.
This is the case of the red and blue clusters in the 32 symmetry
network in Fig. 1, because the associated H; cannot have a geo-
metric decomposition, but may have a more structured decom-
position such as a wreath product®’.

We can show that the above decomposition guarantees that the
nodes associated with different subgroups all receive the same
total input from the other subgroups’ nodes. Hence, nodes of each
cluster will not see the effects of individual behaviour of the other
clusters associated with different subgroups. This enables the
clusters to have the same synchronized dynamics even when
another cluster desynchronizes. If that state is stable, we have ID.

To see this let Hy, a subgroup of G, permute only cluster C,,
and 7 be the permutation on the indices of nodes in C,, for one
permutation Ry, ¢ € Hi. Assume x; is not in C,,; thus, it is not
permuted by R, and recall that A commutes with all permutations
in G, then we have (just concentrating on the terms from C,,),

[Rex(t)],= %i(t) = - - -+ 6 [R,AH(x)]
=+ o[ARHX)],= - +0 Y _ AjH(xy;), (6)
j
where 7(]) is, in general, another node in C,, and the sums over
other clusters are unchanged. This shows that all nodes in C,, are

coupled into the ith node in the same way (the same A;; factor).
Similarly, if we use a permution Ry on the cluster C,, containing
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Figure 3 | Experimental observation of isolated and intertwined desynchronization. (a) CS error as the self-feedback, f, is varied. For all cases
considered, 0 =0.525 and ¢ = 0.67x. Colours indicate the cluster under consideration and are consistent with Fig. 1. (b) MLE calculated from simulation.
(c-e) Synchronization error time traces for the four clusters, showing the isolated desychronization of the magenta cluster and the isolated

desychronization of the intertwined blue and red clusters.

x;, we can show that all the nodes of C,, are coupled in the same
way to the nodes in C,,,. Hence, nodes of C,, each receive the same
input sum from the nodes of C,, whether the nodes of C,, are
synchronized or not. This explains how the cluster C,, can
become desynchronized, but the nodes of C,, can still be
synchronized—they all have the same input despite the C,,
desynchronization, thus making the C,, synchronous state flow
invariant. If it is also stable, this is the case of ID. This argument
is easily generalized to the case when H; permutes nodes of
several clusters as this will just add other similar sums to
equation (6). The latter case explains the intertwined desynchro-
nization in the experiment and is a more general form of ID.

Symmetries for different network topologies. How common is
such an ID situation we outlined above? We have examined
symmetry statistics for some classes of random and semi-random
graph types, which suggest that when symmetries are present the
opportunity for ID dynamics will be common, although the sta-
bility for such will depend on the dynamical systems of the
network nodes. We emphasize that we are not attempting to
compare symmetry statistics across different graph models, but
only to generate networks that have different topologies (for
example, random, tree-like and bipartite) to show common
phenomena.

We examined 10,000 realizations of three random and semi-
random networks each with 100 nodes: (1) randomly connected
nodes (random graphs) similar to Erdos-Renyi graphs’!
generated as described above but with 100 nodes and 50
random edges deleted; (2) scale-free (tree) graghs following
Barabasi and Albert*?3%; and (3) random bipartite> graphs using
the RandomBipartite function in Sage with 90 nodes in 1
partition and 10 in the other.

Random graphs were generated by starting with 100 nodes
completely connected and randomly deleting 50 edges. Scale-free
Barabasi and Albert graphs were based on the original Barabasi
and Albert preference algorithm®? using the Sage routine
RandomBarabasiAlbert. These had 100 nodes with 99
edges and a tree structure. Bipartite networks were generated with
the Sage routine RandomBipartite (m;, n, p), which
generates a graph with two sets of nodes (n; in the first

partition and #, in the second partition, where n; 4+ n, =100) and
connections from nodes in the first partition to nodes in the
second partition are added with probability p. We used n; = 10,
1, =90 and p=0.85. Ten thousand realizations of each graph
type were generated. We tested several 10,000 realizations and we
see very little variation in statistics between realizations of the
same class leading us to believe that we are sampling fairly and
enough to trust our results. We also checked for equivalent
(isomorphic) graphs to see how much repetition we had. The
random systems yielded on average 1 equivalent pair per 10,000
realizations. The scale-free cases yielded <0.01% equivalent
graphs. Apparently, we are not near the maximum number of
inequivalent graphs for any of the classes. Even with just 100
realizations, the main trends in number of symmetries and other
statistics are evident, although such small samples occasionally
miss those symmetry cases that are not too common in the class.

Figure 4 shows the different topologies of the networks.
Figure 5a shows the cumulative distribution of symmetries for
each type of network. All have similar distributions overall, but
on different scales of symmetries. Almost all graphs for each type
have several non-trivial clusters and more than one subgroup.
The median numbers of clusters for the random, Barabasi and
Albert, and bipartite networks are 11, 19 and 15, respectively. The
median numbers of subgroups are 8, 15 and 15, respectively.
The per cent of cases where the number of subgroups is less than
the number of clusters (intertwined cases) are 98.45, 98.48 and
0%, respectively. Thus, in these networks symmetries, clusters and
subgroups are simultaneously present and, thus, so is the scenario
for ID.

We also studied symmetries, clusters and subgroup decom-
positions in small-world graphs. Small-world graphs>'** were
generated by starting with a ring of nearest-neighbour connected
nodes, then adding a fixed number of edges to give the same
number of edges as the random graphs in the text. We found we
had to add many edges beyond the usual few used to generate the
small-world effect, because adding only a few edges beyond the
ring rarely resulted in any symmetries. As a result, the small-
world examples approached being similar to the random graphs
so we do not display their results, although the two systems each
have symmetries that the other does not; hence, they appear to
not be exactly identical.
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Figure 4 | Three graph topologies. Graph types analysed are (a) complete graph with random edges deleted, (b) Barabasi-Albert tree graphs and (¢)
bipartite graphs. The number of nodes shown is smaller (20-25) than the actual number used in the calculations (100) so that the topological structure of

each type is clear.
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Figure 5 | Symmetry, cluster and subgroup statistics for three types of networks. The networks are random, Barabasi and Albert (BA in the figure), and
the bipartite case (BP in the figure). The statistics are (a) the cumulative distribution of the number of symmetries (the dashed line is the median), (b) the
counts of the number of non-trivial clusters and (c) the counts of the number of subgroups in the decomposition. The statistics were calculated using

10,000 realizations of each network.

Finally, we examined some man-made and natural networks.
The man-made networks are the Nepal power grid*> and the
Mesa del Sol electrical grid>®. We show the Nepal grid, as its small
size is easier to display in Fig. 6. In addition, shown is the block
diagonalization of the coupling matrix. Here we treat the grid
analogous to ref. 1 in which all power stations are identical with
the same bidirectional coupling along each edge which fits the
model in equation (1). In this model, global synchronization (the
usual desired state) is a solution of the equations of motion.
However, as we have pointed out, if symmetry induced clusters
exist, CS is also a solution of the equations of motion. The Nepal
network has 86,400 symmetries, three non-trivial clusters (plus
two trivial ones) and three subgroups (one for each nontrivial
cluster). This implies it is possible for this network to split into
three sets of synchronized clusters. This also implies that
depending on the exact dynamics, the parameters and the
stability of global and cluster states, it is possible that the CS state
may be a route to desynchronization of the global state in the
Nepal grid or other grids with similar dynamics.

The Mesa del Sol electric grid has 4,096 symmetries, 20 non-
trivial clusters and 10 subgroups. The network has three
intertwined clusters, two with four clusters and one with five
clusters. This is shown in Fig. 7 a circle plot of the Mesa del Sol
network, which, because of the network size (132 nodes), exposes
the cluster structure much better. As the Nepal example indicates,
the symmetry structure makes global synchronization, CS and ID
a possibility in the Mesa del Sol network. We note that the
foregoing analysis of symmetries considers only the topology of
the network. The dynamics of real electrical power networks is
better described by a complex admittance matrix, for which the
symmetries may be different.

Many other networks were studied for symmetries in refs 28,29
for the purpose of finding motifs and redundancies, but not

Figure 6 | Geographical diagram of the Nepal power grid network.
Colours are used to indicate the computed cluster structure. The matrix
(inset) shows the structure of the diagonalized coupling matrix, analogous
to Fig. 1a. The diagonal colours indicate which cluster is associated with
each column.

dynamics. Those networks were Human B Cell Genetic
Interactions, Caenorabhditis elegans genetic interactions,
BioGRID data sets (Human, Saccharomyces cerevisiae, Drosphila
and Mus musculus), the internet (Autonomous Systems Level),
and the US Power Grid. All the networks had many symmetries
ranging in number from on the order of 10'3 to 10'?%, and
could be decomposed into many subgroups (from 3 to more
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Figure 7 | Network and cluster structure of the Mesa del Sol electric grid.
Colours are used to denote clusters. Nodes coloured white are trivial
clusters, containing only one element.

than 50). The subgroups were 90% or more made up of basic
factors (not intertwined) consisting of various orders n of the
symmetric group S,. Hence, viewed as dynamical networks, all
could show ID in the right situations.

Discussion

The phenomena of symmetry-induced CS and ID appear to be
possible in many model, man-made and natural networks, at least
when modelled as unweighted couplings and identical systems.
This is because our work here and that of refs 28,29 show that
many types of networks can have symmetries and refs 20,21 show
that many man-made and natural networks have dynamics
similar to or reducible to equation (1) or its generalizations
mentioned above. We have shown that ID is explained generally
as a manifestation of clusters and subgroup decompositions.
Furthermore, computational group theory can greatly aid in
identifying CS in complex networks where symmetries are not
obvious or far too numerous for visual identification. It also
enables explanation of types of desynchronization patterns and
transformation of dynamic equations into more tractable forms.
This leads to an encompassing of or overlap with other
phenomena, which are usually presented as separate. This list
includes (1) remote synchronization13 in which nodes not
directly connected by edges can synchronize (this is just a
version of CS), (2) some types of chimera states’””, which can
appear when the number of trivial clusters is large and the
number of non-trivial clusters is small, but the clusters are big
(see ref. 38 for some simple examples), (3) partial synchronization
where only part of the network is synchronized (shown for some
special cases in ref. 39).

We note that although we have concentrated mostly on the
maximal symmetry case, we can also examine the cases of lower
symmetry induced by bifurcations that break the original
symmetry and the same group theory techniques will apply to
those cases. Some of this is developed for simple situations
(rings or simple networks with point group symmetry) in ref. 15,
but we now have the ability to extend this to arbitrary complex
networks.

Methods

Calculating the IRR transformation. Below are the steps necessary to determine
the symmetries of the network, obtain the clusters, find the IRRs and, the most
crucial part, calculate the transformation T from the node coordinates to the IRR
coordinates that will block diagonalized A, as A commutes with all symmetries of
the group?’.

Using the discrete algebra software, it is straightforward to determine the group
of symmetries of A, extract the orbits that give the nodes in each cluster and extract
the permutation matrices Ry, and use the character table of the group and the traces
of the Ry’s to determine which IRRs are present in the node-space representation of
the group. Remark: this step is discussed in any book on representations of finite
groups (for example, ref. 22). After this, we put each Ry into its appropriate
conjugacy class. To generate the transformaion T from the group information,
we have written a code?! on top of the discrete alﬁebra software, which for each
IRR present constructs the projection operator PW (vef. 22) from the node
coordinates onto the subspace of that IRR, where [ indexes the set of IRRs present.
This is done by calculating,

dd )
po — TZ 13 R 7)

K geR

where K is a conjugacy class, that is, af the character of that class for the Ith IRR,
d® is the dimension of the Ith IRR and is the order (size) of the group. Remark: the
trivial representation (all IRR matrices =1 and oY = 1) is always present and is
associated with the synchronization manifold. All other IRRs are associated with
transverse directions. Next we use singular value decomposition on P? to find the
basis for the projection subspace for the /th IRR. Finally, we construct T by stacking
the row basis vectors of all the IRRs, which will form an N x N matrix.
We show the results of this applied to the 32-symmetry case in Fig. 1:

01110111111
10111101111
11011111011
11101111111
01110111110
A=|1 1111011111 (8)
10111101111
11111110101
11011111011
11111110100
1111011110 0]

The non-trivial clusters are the nodes [1, 8], [2, 3, 7, 9], [4, 6], [5, 10] (the
numbering of nodes matches the row and column numbers of A). The
transformation matrix is

0 0 0 0 0 0 0 0 0 0o 2
0 0 0 —v2 0 V2 0 0 0 0 0
-v2 0 0 0 0 0 0 —v2 0 0 0
0 0 0 0 -v2 0 0 0 0 V2 0
oo -1 -1 0 0 0 -1 o0 -1 0 0
T:2 -V2 0 0 0 0 0 0 V2 0 0 0
0 0 0 0 -V2 0 0 0 0 V2 0
0 0 0 —v2 0 -V2 0 0 0 0 0
0 -1 1 0 0 0 -1 0 1 0 0
0 0 V2 0 0 0 0 0 -vV2 0 0
L 0 —v2 o0 0 0 0 V2 0 0 0 0]
)
and the block diagonal coupling matrix is
0 -V2 —vV2 0 -2 0 0 0 0 0 0]
-V2 1 2 2 2v2 0 0 0 0 0 0
-2 2 1 1 2v2 0 0 0 0 0 0
0 2 1 1 2v2 0 0 0 0 0 0
-2 2y2 2v2 2v2 2 0 0 0 0 0 0
B= 0 0 0 0 0 -1 -1 0 0 0 0
0 0 0 0 0 -1 -1 0 0 0 0
0 0 0 0 0 0 0 —1 0 0 0
0 0 0 0 0 0 0 0 -2 00
0 0 0 0 0 0 0 0 0 0 0
L o 0 0 0 0 0 0 0 0 0 0]

(10)

Experimental methods. The SLM (Boulder Nonlinear Systems P512-1550) has an
active area of 7.68 x 7.68 mm? and a resolution of 512 x 512 pixels. The camera
(Goodrich SU320KTSW-1.7RT/RS170) has an indium gallium arsenide focal
plane array with 320 x 256 pixels and an area of 8 x 6.4 mm?. Using a lens
assembly, the SLM was imaged onto the camera with the magnification and
orientation adjusted so that each 2 x 2 pixel area on the SLM is projected onto a
camera pixel. The camera’s frame rate was ~8Hz and was synchronized with
the SLM’s refresh rate.
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Each oscillator in equation (5) corresponds to a square patch of 16 x 16 pixels
on the SLM, which is imaged onto an 8 x 8 pixel region of the camera’s focal plane
array. The intensity Z(x) is the average of camera pixel values in this area. The
same phase shift x is applied by each of the SLM pixels in the patch. We employ a
spatial calibration and lookup table to compensate for inhomogeneities in the SLM.

Data analysis methods. The phase shifts imparted by each oscillator xj are
recorded and used to determine the degree of synchronization, as shown in Fig. 3.
An individual oscillator’s deviation from synchronization at a given time as shown
in Fig. 3c-e is measured by Ax; = (x! —x'), where X' denotes a spatial average of
the phases of all of the nodes within a particular cluster at time ¢. To quantify the
degree of synchronization within a cluster as shown in Fig. 3a, we calculate the

- 12
root-mean square synchronization error Axgys = <<(xf — :’cf)2>T> where (o)

indicates an average over a time interval T (here taken to be 500 iterations).
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