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We study the problem of controlling a general complex network toward an assigned synchronous evolution
by means of a pinning control strategy. We define the pinning controllability of the network in terms of the
spectral properties of an extended network topology. The roles of the control and coupling gains, as well as of
the number of pinned nodes, are also discussed.
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I. INTRODUCTION

The need of regulating the behavior of large ensembles of
interacting units is a common feature of many physical, so-
cial, and biological networks. For instance, many regulatory
mechanisms have been uncovered in the context of biologi-
cal, physiological, and cellular processes, which are funda-
mental to guarantee the correct functioning of the whole net-
work �1�. Examples include, in physiology, the synchronous
beat of heart cells whose rhythm is generated by pacemaker
cells situated at the sinoatrial node �2�, the control of the
respiratory rhythm played by synaptically coupled pace-
maker neurons in the medulla �3�, and the generation of
rhythmic pacemaker currents by networks of interstitial cells
of Cajal in the gastrointestinal tract of mammals �4�. In so-
cial networks, opinion dynamics are often driven by key in-
dividuals termed as opinion leaders �5�. Other relevant ex-
amples, in biology, are the mechanisms through which cell
cycles are controlled �6� and synchronized �7�.

Understanding the fundamental nature of such regulatory
mechanisms is therefore of utmost importance in physics and
applied science. Pinning control has been proposed in the
literature �8,9� as a fitting model to provide an insight into
the regulatory mechanisms to control lattices and networks
of coupled dynamical systems. The general idea behind pin-
ning control is a self-feedback action �over a given reference
evolution�, acting on a limited subset of the dynamical sys-
tems placed at the network nodes. These nodes, also termed
as reference sites or pinned sites, play the role of network
leaders and/or pacemakers. Specifically, a direct control ac-
tion is active only on these nodes and is propagated to the
rest of the network through the coupling among the vertices.

In this paper, we define the concept of pinning controlla-
bility �different from synchronizability� and derive a quantity
to assess this property for physical networks of interest.
These findings have immediate theoretical and experimental
relevance. By evaluating the pinning controllability of a
given network, one could decide the effectiveness of a pin-
ning control strategy in terms of the strength of the required
control action, the number of nodes to be pinned, and the
effects that a given topology of feedback connections can
have on the entire network.

The rest of the paper is outlined as follows. In Sec. II we
introduce the pinning control formalism, apt to describing
dynamical complex networks subject to a decentralized con-
trol action. In Sec. III a methodology �based on the master
stability function approach �10�� is introduced to define the
pinning controllability of a given complex network of inter-
est. Finally, a validation is presented in Sec. IV, where pin-
ning control of scale-free complex networks of chaotic oscil-
lators is studied through numerical simulations.

II. PINNING CONTROL: AN OVERVIEW

In recent years, synchronization of complex networks of
coupled oscillators has been the subject of intensive research
activity within the scientific community. A common assump-
tion in the literature is that all the dynamical systems at the
network nodes are identical, while the problem of synchro-
nization of networks of nonidentical oscillators has received
much less attention. In particular, the master stability func-
tion �MSF� approach, introduced in �10�, has been success-
fully applied to synchronization of complex networks in a
wide variety of situations �see, e.g., Refs. �10–13�, to name a
few contributions�. Note that the MSF approach is valid un-
der the hypothesis that all the vector fields at the network
dynamical nodes are identical.

In this paper, we study networks in which two different
layers of dynamical nodes coexist: the uncontrolled sites and
the reference �controlled� ones. In particular, the latter play
the role of leading the whole network toward a given �de-
sired� reference evolution.

Generally, we assume the controlled complex network to
be described by the following set of equations:

dxi

dt
= f�xi� + ��

j=1

N

Aij�h�xj� − h�xi�� + ��
k=1

n

��i − ck�ui,

�1�

i=1, . . . ,N, representing the behavior of N identical dynami-
cal systems coupled through the network edges.

The first term on the right side of Eq. �1� describes the
state dynamics of the oscillator at each node �xi�t� , i
=1, . . . ,N� via the nonlinear vector field f�xi�; the second
term represents the coupling among pairs of connected oscil-
lators, through a generic output function h�xi�, where the*Corresponding author. Email address: fsorrent@unina.it
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coupling gain � represents the overall strength of the inter-
action. Information about the weighed network topology is
contained in the coupling matrix A, whose entries Aij, are
zero if node i is not connected to node j� i, but are positive
if there is a direct influence from node i to node j, with �Aij�
giving a measure of the strength of the interaction. In what
follows, we assume the matrix A to be irreducible �i.e., the
associated digraph is globally connected�. The last term on
the right-hand side of Eq. �1� represents the pinning control
action. This term is present only for n= pN �usually p�1�
pinned nodes in the network, identified by the set C
= �c1 ,c2 , . . . ,cn�. As commonly assumed in pinning control
schemes, such nodes play the role of leading the others to-
ward some desired reference evolution, say s�t�. Note that
the control input ui=��xi ,s , t� has a direct influence only on
the nodes belonging to the set of the reference sites C.

In what follows, we consider two different strategies for
choosing the pinned nodes. �i� Random pinning: The n
pinned nodes are randomly selected with uniform probability
from the set of all the network vertices. �ii� Selective pinning:
The n pinned nodes are first sorted according to a certain
property at the network vertices �for instance, the vertex de-
gree or betweenness centrality�, then the nodes to be pinned
are chosen in that particular order.

Hereafter, following �9�, we choose the control input ui to
be generated by a simple state-feedback law with respect to
the reference evolution s�t�, which is assumed to satisfy ds

dt
= f�s�. Thus, we set ui=�i�s−xi� at every pinned node ci, i
=1, . . . ,n, where �i is the control gain acting on node ci.

Equation �1� can be rewritten as

dxi

dt
= f�xi� − ��

j=1

N

Lijh�xj� − ��
k=1

n

��i − ck��i�xi − s� , �2�

i=1, . . . ,N, where the elements of the Laplacian matrix L
are as follows: Lij =−Aij if i� j and Lii=� j�iAij ∀i. Denote
by ��i=�i

r+ j�i
i� the set of eigenvalues of L and assume they

are ordered in such a way that �1
r ��2

r � ¯ ��N
r .

Note that in the specific case where C=0, i.e., no refer-
ence sites are present in the network, it is possible to define
the synchronization manifold, Sª �x1=x2= ¯ =xN�, which is
an invariant set for system �2� �10�. In this case, according to
the choice of the coupling gain �, all the oscillators in the
network may settle over a solution belonging to S �not
known a priori� and the network becomes synchronized. In-
terestingly, in �10,11�, the stability of the manifold S was

related to RN=
�N

r

�2
r and MN=maxj � j

i, suggesting an evaluation
of the synchronizability of a generic network topology in
terms of its spectrum. In particular, a network is said to be
more �or less� synchronizable according to the width of the
range of values of the coupling gain � for which synchroni-
zation is attained.

A different problem consists, instead, in driving a network
of coupled dynamical systems toward a desired evolution
determined a priori, by means of an appropriate control ac-
tion. This is the case where C�0, indicating the presence of
some closed-loop equations within the set C in Eq. �2�. Note
that when C�0, the evolution x1�t�=x2�t�= ¯ =xN�t�=s�t�
becomes the only admissible solution in S for the controlled
network described by Eq. �2�. Thus, it is important to study
the stability of such a solution, which corresponds in this
context to the model reference chosen for the network.

It is worth noting here that the master stability function
approach cannot be applied directly to network �2� because
of the presence of inhomogeneous dynamics at the controlled
and uncontrolled nodes. In the next section we will provide
an extension of the MSF approach to the case of dynamical
networks subject to pinning control, described by the set of
equations �2�.

III. EVALUATING THE PINNING CONTROLLABILITY
OF COMPLEX NETWORKS

In this section, we propose that the approach presented in
�10� can be extended to define and assess the pinning con-
trollability of a given network of interest. In particular, given
a network described by Eq. �2�, we define the network pin-
ning controllability in terms of the values of the coupling
gain � and the control gains �i, i=1, . . . ,n, in Eq. �2�, needed
in order for the network to achieve the desired evolution ds

dt
= f�s�. We shall seek to assess the pinning controllability of
network �2� by considering an extended network of N+1
dynamical systems yi, where yi=xi for i=1,2 , . . ,N and
yN+1=s. In so doing, we assume that the desired common
evolution s is given by the state evolution of an extra virtual
vertex, which is added to the original network. Then, we can
rewrite Eq. �2� as

dyi

dt
= f�yi� − ��

j=1

N+1

Mijh�yj�, i = 1,2, . . . ,N + 1, �3�

where M= �Mij� is an �N+1�-dimensional square matrix,
with

Mij =	
L11 + �1�1 L12 ¯ L1N − �1�1

L21 L22 + �2�2 ¯ L2N − �2�2


 � 

LN1 LN2 ¯ LNN + �N�N − �N�N

0 0 ¯ 0 0
�
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and �i=�k=1
n ��i−ck�.

Note that M is an asymmetric zero row-sum matrix, with
positive values along the main diagonal. At first, let us as-
sume the matrix A to be symmetric, which ensures the ma-
trix M to be diagonalizable �14�. Then, let ��i=�i

r+ j�i
i� be

the eigenvalues of M and assume they are ordered in such a
way that �1

r ��2
r � ¯ ��N

r . By graph theory and linear al-
gebra, we have �i

r	0 ∀i �15�. Moreover, �1 is the only null
eigenvalue of M.

Now, the arguments of the master stability function ap-
proach �10� immediately apply to Eq. �3�. In particular, by
making use of the MSF, we can investigate the stability of
the reference evolution, y1�t�=y2�t�= ¯ =yN�t�=yN+1�t�,
which can be evaluated in terms of the stability of N+1
independent blocks in the parameter 
=��i, i=1, . . . ,N+1.
Once the functional forms of f and h have been assigned, the
MSF associates to each value of the complex parameter 

=
r+ j
i, the maximum Lyapunov exponent of the system in
each block. It can be shown that for a large class of systems
�in terms of the dynamic function f and the output function
h�, there exists a bounded zone of the complex plane cen-
tered on the real axis, for which the MSF is negative. Thus,
the condition to be satisfied, in order to guarantee the stabil-
ity of the desired common solution s�t�, is that all the ��i,
i=2, . . . ,N+1, belong to the bounded region of the complex
plane where the MSF is negative �10�. Namely, for a given
form of the matrix M, there is typically a finite range of
values of �, say �, for which the stability of the synchronous
state can be achieved.

Hence, the spectrum of M affects the stability of the syn-
chronization manifold. In this paper, we focus on the case
that M has a real spectrum. Then, the lower the eigenratio

RN+1=
�N+1

r

�2
r , the larger the � �10�. More generally, when the

Laplacian matrix has a complex spectrum, it has been pro-
posed that the width of � can be evaluated in terms of both

RN+1=
�N+1

r

�2
r and MN+1=maxj � j

i �11�. Namely, the condition
on the maximum imaginary part of the spectrum gives infor-
mation about the spread of the eigenvalues along the direc-
tion of the imaginary axis; in the limit of MN+1→0, the
entire spectrum tends to the real axis and the �best� condition
is recovered that � depends only on RN+1. Furthermore, as
explained in �16�, the same approach can be extended also to
the case of M being a nondiagonalizable matrix, when the
condition is satisfied that the network embeds at least an
oriented spanning tree �17�.

Now, in the case often considered in the literature of all
control gains being the same, i.e., �=�1=�2= ¯ =�n, by re-
writing the system in Eq. �3� as

dyi

dt = f�yi�−�� j=1
N+1Mij�h�yj�,

for i=1, . . . ,N+1, where M�= �
�M, and by noticing that the

two matrices M and M� are characterized by the same
eigenratios, we obtain, for every choice of �, a similar con-
dition on the interval of values of �, say K, for which the
reference evolution is stable �this is true as long as the maxi-
mum imaginary part MN+1 remains negligible�.

Note that by taking this approach we have succeeded in
decoupling the dynamical properties of the open-loop net-
work �in terms of f and h� from the factors encoded in the
matrix M: specifically, �i� the structural properties of the

network, in terms of the original network topology and the
choice of the set of the controlled nodes C and �ii� the choice
for each node in C, c1 ,c2 , . . . ,cn of the associated control
gain �1 ,�2 , . . . ,�n.

Thus, in analogy to the concept of network synchroniz-
ability defined in the literature �10,12,13�, we propose to
give a definition of the network pinning controllability in
terms of the widths of the ranges � and K, for which the
reference evolution y1�t�=y2�t�= ¯ =yN�t�=s�t� is stable.
Specifically, the lower the RN+1 and MN+1 are, the more the
network is pinning controllable �note that this definition is
independent of the choice of the functions f and h�. Also,
according to this definition, it becomes possible to act on
both the network topology as well as the choice of the nodes
to pin and their control gains, in order to vary �and eventu-
ally improve� the network pinning controllability.

IV. NUMERICAL RESULTS

In this section, by following the approach presented
above, we present numerical evidence of the usefulness of
RN+1 as an index for evaluating the pinning controllability of
a given complex network. Moreover, we show the behavior
of RN+1 under variations of the control gain � and the pinning
probability p, in the case of scale-free complex networks.

To validate our theoretical findings, we consider the case
of a Barabasi-Albert �BA� scale-free network �18�, character-
ized by a power-law degree distribution P�k��k−3 �we have
checked our results to be reproduced in a similar qualitative
way for different kinds of networks and lattices, including
real-world samples of networks�, with N identical Rössler
oscillators placed at the network vertices. Namely, the dy-
namics at each node i is described by the following vector
field: f�xi�= f�xi1 ,xi2 ,xi3�= �−xi2−xi3 , xi1+0.165xi2 , 0.2
+ �xi1−10�xi3�. The output function h has been chosen, as in
�19�, to be h�x�=Hx, where H is the matrix: ( �1 0 0�,�0 0 0�,
�0 0 1� ), indicating that the oscillators are coupled through
the variables xi1 and xi3 �i=1,2 , . . . ,N+1�.

Two cases have been considered: �1� the combinatorial
Laplacian defined as Lij =L ji=−1 if i and j are connected
�i� j�, 0 otherwise, and Lii=�i ∀i �corresponding to a sym-
metric network�; and �2� the normalized Laplacian defined
as Lij =−1/�i if i is connected to j �i� j�, 0 otherwise, and
Lii=1 ∀i, which corresponds to an asymmetric network con-
figuration �for more details, see �15��.

For simplicity, we evaluate here the effect of n pinned
nodes with gains �1=�2= ¯ =�n=�, on the structural pa-
rameters RN+1 and MN+1. For both the combinatorial and the
normalized Laplacians considered here, the spectra are real
and thus MN+1=0 �20�. The main results are shown in Fig. 1,
for symmetric and asymmetric topologies. In both cases, the
eigenratio RN+1 �in Figs. 1�a� and 1�c�� is characterized by a
minimum around a specific value of the control gain �. This
has immediate relevance as it suggests that by appropriately
tuning the control gain, it is possible to enhance the pinning
controllability of the network. Specifically, we observe that
either a too large or too low value of � can reduce the net-
work pinning controllability.
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As shown in Figs. 1�a� and 1�c�, when p is low � p=0.1 in
the figure�, RN+1 is higher than the eigenratio RN associated
with the corresponding uncontrolled network �represented by
the continuous horizontal lines in Fig. 1�. Intuitively this is
not surprising since, in order to control the network, we are
requiring one more eigenvalue �than in the case of generic
network synchronization �10�� to fall into the stability region
of the MSF.

Note that, for every choice of the coupling gain �, the
eigenratio RN+1 may be conveniently varied by choosing an
appropriate control gain �. At the same time, for every �, a
bounded region of stability can be defined on the complex
plane, and a timely choice of � is necessary in order to place
all the ��i inside it. Thus, the stability of the reference evo-
lution is sensible to both the values of the control gain and
the coupling gain and values of � and �, which are either too
large or too small, may prevent the stability over the refer-
ence evolution of the network trajectories.

It is worth noting here that there is a prominent difference
between the effects that varying � and � can have on the
pinning controllability of a given network. Specifically the
width of � is determined essentially by the particular shape
of the MSF �which can be numerically computed, once the
forms of the functions f and h are given�. On the other hand,
the width of K depends on the spectral properties of the
matrix associated to the extended network, defined as pro-
posed in this paper. Specifically, when the MSF is nonmono-
tone, as in the case of the xz-coupled Rössler discussed in
this paper, the width of the interval of the values of �, for
which the stability of the reference evolution can be guaran-
teed, depends simply on the eigenratio RN+1, as shown in
Figs. 1�a�–1�c�.

The asymptotic value of the control error E
= 1

��T�N�i=1
N T

T+�T �xi�t�−s�t� �dt, with �x � = �x1 � + �x2 � + �x3�,
has been computed under variations of the control gain � in
Figs. 1�b� and 1�d� �respectively, for fixed �=0.30 and 2.8�
and both � and � in Fig. 2. Note that interestingly the control
error E in Fig. 2 behaves locally as a convex function of
�� ,��.

Finally, the effect of a variable number of pinned nodes
�randomly selected within the network� is shown in Fig. 3.
Observe that, by increasing the number of reference nodes,
differently from the case of variable control gains, we re-
cover a monotone behavior in the eigenratio RN+1, as shown
in Fig. 3�a�. Interestingly, by increasing p, it is even possible

FIG. 1. �Color online� Left pictures: Combinatorial Laplacian
�symmetric topology�. �a� Behavior of the eigenratio �N+1 /�2 of
the Laplacian spectrum as function of the control gain � for a BA
network, with average degree �k�=4, p=0.1, �=0.30. �b� Control
error at regime E as function of the control gain � under the same
conditions as in the upper plot. Right pictures: Normalized Laplac-
ian �asymmetric topology�. �c� RN+1 vs � for a BA network, with
average degree �k�=4, p=0.1, �=2.8. �d� E vs � under the same
conditions as in the upper plot. In �a� and �c� the horizontal con-
tinuous lines represent the eigenratio RN of the corresponding un-
controlled networks.

FIG. 2. �Color online� Curve level sets of the natural logarithm of E, asymptotic value of the control error, as a function of both � and
�, for a BA network of 103 nodes, with average degree �k�=4, p=0.1. The left �right� panel shows the case of combinatorial �normalized�
Laplacian.
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to make RN+1 lower than RN, i.e., controlling the network
becomes easier than synchronizing it. Also in Fig. 3�b�, the
asymptotic value of the control error E is observed to de-
crease for increasing values of p.

In Fig. 3 a comparison between random pinning �squares�
and selective pinning �triangles� is also shown. In the case of
selective pinning, the nodes have been chosen in the order of
decreasing degree. We observe that selective pinning yields a
lower eigenratio RN+1 as well as a lower control error E over
different values of p, as shown separately in Figs. 3�a� and
3�b�. This is in agreement with the previously reported re-
sults where a different approach was used to evaluate the
effectiveness of pinning control schemes �9�. Moreover, this
shows the benefits of taking into account some network to-
pological features in choosing some suitable nodes to pin.

From a control design viewpoint, we observe that, while
increasing the control gains may lead to a loss of pinning
controllability of the network, applying a larger number of
controllers is always an effective strategy. On the other hand,
the requirement of pinning a large number of nodes can
make the technique unfeasible in those networks where al-
tering the dynamics of too many nodes can lead to a loss of
functionality of the network itself, or is too costly and un-
practical.

The case of normalized Laplacian is shown in Figs. 3�c�
and 3�d�, where the selective pinning is confirmed to perform
better than the random one. This indicates that high degree
vertices continue to be better suited to control the network
than the others, even when the total strength of the interac-
tion at each vertex is rescaled by its degree.

Following these preliminary results, we believe other net-
work properties such as degree correlation �21�, clustering
�22�, centrality �23�, and community structure �24� can influ-
ence the effectiveness of pinning control schemes. This rep-
resents the subject of future research activities.

V. CONCLUSIONS

In this paper we have presented a theoretical approach to
describing the controllability of networks under pinning con-
trol schemes. We have defined the concept of pinning con-
trollability and characterized the pinning controllability of a
given network in terms of the coupling gain, the control gain,
and the number of pinned nodes. We found that this property
can be analyzed by investigating the synchronizability of an
appropriately extended network. For instance, Fig. 1 shows
that there are values of the control gain which render the
eigenratio or the control error minimal. We wish to empha-
size that information such as this could be used to understand
why some physical networks possess certain values of the
coupling and control parameters. Moreover, the methodology
presented here can be an effective tool for the design of
pinning control schemes of many biological and technologi-
cal networks.
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