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This paper deals with adaptive synchronization of chaos in the presence of time-varying
communication-delays. We consider two bidirectionally coupled systems that seek to syn-
chronize through a signal that each system sends to the other one and is transmitted with
an unknown time-varying delay. We show that an appropriate adaptive strategy can be
devised that is successful in dynamically identifying the time-varying delay and in syn-
chronizing the two systems. The performance of our strategy with respect to the choice
of the initial conditions and the presence of noise in the communication channels is tested
by using numerical simulations. Another advantage of our approach is that in addition to
estimating the communication-delay, the adaptive strategy could be used to simulta-
neously identify other parameters, such as, e.g., the unknown time-varying amplitude of
the received signal.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last twenty years, synchronization of chaos has
attracted much attention from the scientific community
[1–5]. An interesting result is the observation that two
identical chaotic systems, starting from different initial
conditions can be synchronized on a stable chaotic time-
evolution [6–11]. Even if the systems are slightly non-iden-
tical, they may nonetheless converge onto an approxi-
mately synchronized chaotic time-evolution [12–19].
Stochastic synchronization for two coupled systems or for
an arbitrary network in the presence of time delays has
been studied in [20,21]. Applications of synchronization
of chaos include but are not limited to secure communica-
tion [22–26], system identification [27–31], data assimila-
tion [32,33], sensors [34], information encoding and
transmission [35,36], and multiplexing [37]. In this paper,
we show that two chaotic systems can be synchronized in
the presence of a time-varying unknown communication-
. All rights reserved.
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delay through an appropriate adaptive strategy; moreover,
by using this adaptive strategy, each system is able to inde-
pendently formulate a dynamical estimate of the unknown
communication-delay.

In Ref. [38] it was proposed that the property of a
system of being chaotic can be conveniently exploited in
control applications. Here we consider an identification
problem where an unknown time-varying communica-
tion-delay between two bidirectionally coupled systems
is to be estimated. We show that choosing the dynamics
of the individual systems to be chaotic is convenient in
terms of the identification strategy. Moreover, by using
our strategy we are able to isochronally synchronize the
two systems.

As a reference application, we consider the problem of
identifying a time-varying communication-delay between
two autonomous moving platforms, though we aim at pre-
senting a general methodology rather than a specific appli-
cation. Moreover, our paper provides new insight into the
phenomenon of synchronization of chaos, as we are the
first ones to formulate an adaptive strategy that success-
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fully addresses synchronization of chaos and identification
of time-varying communication-delays altogether.

In Section 2 we present the formulation of our problem
and we introduce the reference application of identifying a
time-varying communication-delay between two autono-
mous moving platforms. In Section 3 we formulate an
adaptive strategy to identify unknown communication-de-
lays in the case of non-autonomous systems, which is val-
idated by using numerical simulations. In Section 4 we
show that a decentralized agreement protocol can be used
together with our adaptive strategy to identify the cou-
pling-delays for the case of autonomous systems. The ef-
fects of the choice of the initial conditions are
investigated in Section 5. In Section 6 we present a modi-
fied adaptive strategy that performs better in the presence
of noise in the communication channels. Finally, the con-
clusions are given in Section 7.

2. Formulation

A typical scheme for synchronization of two chaotic
systems in the presence of communication-delays is the
following [39–42],

_xiðtÞ ¼ FðxiðtÞ; tÞ þ Ci½Hðxjðt � siÞÞ � Hðxiðt � siÞÞ�; ð1Þ

i = {1,2}, j = (3 � i). F : Rn � Rþ ! Rn describes the dynam-
ics of each uncoupled chaotic system, H : Rn ! R is a scalar
output function, Ci is an n-dimensional constant coupling
vector, the communication-delay si is the time that it takes
for the signal broadcast by node j to be received by node i.
The delays si in Eq. (1) are assumed constant and known.

Note that Eq. (1) are a system of delay differential equa-
tions. Hence the solution xi(t), i = {1,2}, is determined by
knowledge of the initial conditions for xi over the time-
interval [�smax,0], where smax = max(s1,s2).

In the particular case in which x1 = x2 = xs, the terms in
the square brackets of (4) vanish, and the two systems
evolve on the synchronous solution,

_xsðtÞ ¼ FðxsðtÞ; tÞ: ð2Þ

For a given choice of the functions F and H, stability of the
synchronized solution depends on the parameters C1, C2,
s1, and s2. In particular, a condition for stability is that
the communication-delays si be smaller than the charac-
teristic timescale Tx of an uncoupled system (2) [42],

si 6 Tx; ð3Þ

i = {1,2}.
If we assume that the communication-delay from i to j

is the same as that from j to i, Eq. (1) reduces to

_xiðtÞ ¼ FðxiðtÞ; tÞ þ Ci½Hðxjðt � sÞÞ � Hðxiðt � sÞÞ�; ð4Þ

i = {1,2}, j = (3 � i), s1 = s2 = s. The assumption that the
communication-delays are the same in both directions
holds true for example for those applications that use line
of sight communication.

In this paper, we choose the function F in (2) to generate
synchronous (uncoupled) chaotic dynamics. Chaotic sig-
nals have been successfully employed in cryptography
and in secure communication [22,43,44]. Adaptive strate-
gies based on synchronization of chaos have also been pro-
posed to dynamically identify the parameters of unknown
systems [27–30]. In such applications, it is possible to ex-
ploit the specific properties of chaotic signals. In fact, since
a chaotic time trace never repeats in time, it provides an
infinite amount of information that can be used by the
identification strategy (see, e.g., [30,45]).

In this paper, we propose an adaptive strategy that ex-
ploits the property of chaotic systems of being synchroniz-
able to estimate a time-varying unknown communication-
delay. Our goal is twofold:

(i) synchronizing the two systems;
(ii) dynamically and independently estimating at each

system the communication-delay.

To our knowledge, the use of adaptive strategies to
simultaneously achieve synchronization and estimate un-
known communication-delays has not been previously ad-
dressed in the literature. A strategy based on
synchronization of chaos to identify the unknown
strengths of the couplings between two or more coupled
systems has been proposed in [47] and implemented in
[48–50]. Synchronization of chaos has also been used to
identify and predict the dynamics of unknown real systems
[27–30]. Adaptive strategies have been proposed to en-
hance synchronization of coupled dynamical systems by
acting on the coupling strengths [51–53] and the topology
of interconnections [54] and to synchronize self-sustained
chaotic systems [46]. Unknown parameters have been
adaptively estimated in the presence of time-delays in
[55–59]. A technique to estimate the internal delay of an
unknown system has been proposed in [45]. The same
problem has been studied in [60] for the case of linear sys-
tems. In a recent paper [61], synchronization of chaos in
the presence of an unknown communication-delay is stud-
ied between two unidirectionally coupled systems, whose
synchronization is guaranteed by a connection to an exter-
nal master system. In this case, the problem of synchroniz-
ing the two systems is separate from that of identifying the
delay. In this paper, we consider two bidirectionally cou-
pled systems, we do not assume connection to an external
master system, and we formulate an adaptive strategy that
can be used to simultaneously synchronize the two sys-
tems and identify the delay.

In what follows we present the adaptive synchroniza-
tion strategy in terms of a reference application. In partic-
ular, we consider the problem of identifying a time-varying
communication-delay between two autonomously moving
platforms. We assume that two identical chaotic oscillators
are installed at each platform and that these chaotic sys-
tems seek to synchronize via a signal broadcast from one
platform to the other (and viceversa). The signal received
at each platform is transmitted with a time-varying delay,
which depends on the relative distance between the two
platforms. Information on the communication-delay can
be used, e.g., to estimate the relative distance.

Each platform is characterized by a pair of state vari-
ables {pi(t),xi(t)}, i = {1,2}, where xiðtÞ 2 Rn is the state of
an oscillator installed at platform i, and piðtÞ 2 Rm is the



Fig. 1. The figure shows an example of D-lag synchronization between
two chaotic time series generated by integrating Eq. (19). Our goal in this
paper we will be setting D to 0.

Fig. 2. The figure shows an example of lag synchronization between two
P-periodic time series. As can be seen from the figure, lag synchronization
can be observed for lags equal to D + NP, with N being any integer
number.
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position of the platform i. We assume that the two plat-
forms seek to achieve mutual synchronization of the x’s
dynamics (the dynamics of the oscillators), while indepen-
dently moving along the trajectories pi(t). In order to
achieve synchronization, each platform broadcasts a signal
which encodes information on the evolution of the x’s
dynamics. The signals are received with a non-negligible
communication-delay, which depends on the relative mo-
tion of each platform with respect to each other.

We consider that each uncoupled oscillator is described
by _xiðtÞ ¼ FðxiðtÞ; tÞ. Moreover, we assume that pi(t) typi-
cally evolves on a timescale Tp which is much longer than
the timescale Tx on which an uncoupled system evolves,
that is,

Tp � Tx: ð5Þ

This may be achieved, for example, by choosing the indi-
vidual oscillators to have very fast dynamics, i.e., much fas-
ter than the dynamics of pi(t), depending also on the
specific application of interest. System i = {1,2} broadcasts
a signal H(xi(t)), which is received by j = (3 � i) with a delay
si(t), which is a function of both pi(t) and pj(t). Under our
assumption that Tp� Tx, we can approximate s1(t), s2(t)
with the same delay, say s(t), with s(t) being a function
of the distance kpi(t) � pj(t)k.

When the platforms are coupled, the equations for the
oscillators become,

_xiðtÞ ¼ FðxiðtÞ; tÞ þ Ci½riðtÞ � Hðxiðt � s0iðtÞÞÞ�; ð6aÞ
riðtÞ ¼ Hðxjðt � sðtÞÞÞ; ð6bÞ

i = {1,2}, j = (3 � i). Here, F, H, and Ci are the same as in Eq.
(4). The received signal at node i, ri(t), propagates from
node j to node i with a communication-delay s(t). Note
that in Eq. (6a), we subtract from the received signal
H(xj(t � s(t))) the internal signal H xi t � s0iðtÞ

� �� �
; i ¼f1;2g,

where s0iðtÞ is an estimate of s(t) at node i. In the particular
case in which x1 = x2 = xs and s01 ¼ s02 ¼ s, the terms in the
square brackets of (6a) vanish, and the two systems evolve
on the synchronous solution (2). Note that in this case,
integration of the system of Eqs. (6) requires knowledge
at each time t of the state variables xi over the time-inter-
val [t � smax(t), t], where smaxðtÞ ¼max sðtÞ; s01ðtÞ; s02ðtÞ

� �
.

A fundamental issue that typically arises when consid-
ering communication between two or more moving plat-
forms is that of synchronization of the time-clocks at each
platform [62,63]. In Section 3 we will assume the presence
of two perfectly synchronized internal clocks at the two
platforms. This is reflected by the choice of non-autono-
mous chaotic oscillators at the two platforms,
_xiðtÞ ¼ FðxiðtÞ; tÞ, for which the dynamics at the two oscilla-
tors explicitly depends on the same variable t. As we will
see, this requirement is important for the successfulness
of the adaptive strategy, i.e., for simultaneously synchroniz-
ing the two systems and correctly estimating the unknown
communication-delays. The problem of synchronization of
non-autonomous chaotic systems has been studied in [64].
However, in Section 4 we show that a decentralized agree-
ment protocol can be used to estimate the delay and to syn-
chronize the two oscillators for the case that they are
autonomous systems.
2.1. Uniqueness of the solution for both the cases of
autonomous and non-autonomous oscillators

We now consider that the uncoupled dynamics at each
platform is autonomous, i.e., we replace F(xi(t), t) ? F(xi(t))
in Eq. (6a). We show that when such a modification to our
scheme is done, we become unable to univocally deter-
mine the unknown delay s, by requiring that the two sys-
tems synchronize, i.e., that Hðxjðt � sÞÞ ¼ Hðxiðt � s0iÞÞ in
Eqs. (6), i = {1,2}, j = (3 � i).

A chaotic time trace never repeats in time. Since H(xi(t))
in (6) is chaotic, i = {1,2}, the only possibility for the re-
ceived signal H(xj(t)) to cancel out with the internal signal
H(xi(t)) over time is that the two chaotic time traces are the
same one, possibly translated by a fixed time lag equal to
D, i.e.,

x1ðtÞ ¼ x2ðt � DÞ: ð7Þ
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An example of D-lag synchronization between two chaotic
time series (Eq. (7)) is shown in Fig. 1. Our goal in this pa-
per will be setting D to 0. Fig. 2 shows an example of lag
synchronization between two identical P-periodic time
series. As can be seen, for this case, lag-synchronization
is possible for value of the lags equal to D + NP, with N
being any integer number. Thus using chaotic dynamics
at the individual nodes restricts the possibility of lag-syn-
chronization to only one lag D.

By setting the coupling terms in the square brackets of
Eqs. (6) to zero, and by using (7), we obtain,

x2ðt � sÞ ¼ x2ðt � s01 � DÞ; ð8aÞ
x2ðt � s� DÞ ¼ x2ðt � s02Þ: ð8bÞ

Again, by observing that x2(t) is chaotic, Eqs. (8) reduce to,

s ¼ s01 þ D; ð9aÞ
sþ D ¼ s02: ð9bÞ

In Eqs. (9), s is a time-varying external parameter. Then
we see from (9) that for each value of s, the two systems
may show D-lag synchronization if the following condi-
tions are satisfied,

s ¼ s01 þ D; ð10aÞ
2D ¼ s02 � s01: ð10bÞ

A case of interest is that Eqs. (10) are satisfied for,

s02 ¼ s01 ¼ s; ð11Þ

corresponding to D = 0. Condition (11) corresponds to a
particular (desirable) solution for (10), for which both the
estimates s01 and s02 converge on the true value of s, with
the two systems synchronizing with lag equal zero.

In what follows, we will propose an adaptive strategy to
evolve the parameters s0i in such a way to minimize the
coupling terms in the square brackets of Eqs. (6). However,
we should note that by setting to zero the coupling terms
in the square brackets of Eqs. (6), a general solution of
the type (10) will arise, and not necessarily of type (11).

Thus to avoid ambiguities in resolving the coupling de-
lays, hereafter we consider two alternative possible reme-
dies, one of which applies to nonautonomous systems and
the other one applies to autonomous systems. As a first
solution, we assume that the dynamics of the uncoupled
x’s in Eqs. (6) are non-autonomous, i.e., they explicitly de-
pend on the time variable t. Then, if such dependence on t
is appropriately chosen, under the assumption of chaotic
dynamics for the x’s, we can rule out the possibility that
Eq. (7) is satisfied for D – 0. To better explain our point,
let us recur to an example. Consider a simple periodic
dependence on time of the type, _xiðtÞ ¼ FðxiðtÞ; sinð2pktÞÞ;
then the only way Eq. (7) can be satisfied is for D being
an integer multiple of k�1, i.e., D = {0,k�1,2k�1, . . .}. How-
ever, not all of these solutions will be stable, with stability
being typically bounded by a maximum allowed lag D, say
Dmax (which depends on the autocorrelation time for an
uncoupled system, see [42]). Therefore, by choosing
k�1 > Dmax, we can ensure that the only possible stable
solution of type (7) is for D = 0. The advantage of this ap-
proach is that it uses the received signal (6b) as the only
available information at each platform and from that it is
able to reconstruct the communication-delay with which
the signal propagates from the receiver to the sender.
The disadvantage is that it requires the presence of two
perfectly synchronized internal clocks at the two
platforms.

A second possible solution ensuring D = 0 in Eqs. (10) is
to set s02 ¼ s01. In fact, with this condition, Eqs. (10) yields
Eq. (11). However, we note that combining information
available at the two different platforms to satisfy the con-
dition that s02 be equal to s01 may be unpractical. In Sec-
tion 4, we introduce a decentralized agreement protocol
with this specific purpose. The advantage of this alterna-
tive strategy is that it allows to work with autonomous
dynamical systems at the two platforms, rather than
non-autonomous systems. The disadvantage is that it re-
quires more information exchanged between the two
platforms.

3. Adaptive strategy

Our goal is independently estimating at each platform i
the unknown communication-delay s(t) from sole knowl-
edge of the received signal ri(t), i = 1,2. To this aim, we
present an adaptive strategy to evolve s0iðtÞ, the estimate
at platform i, to match the unknown communication-delay
s(t). At each node i, we consider a potential,

WiðtÞ ¼ Hðxjðt � sðtÞÞÞ � H xiðt � s0iðtÞÞ
� �� �2

: ð12Þ

From the considerations in Section 2.1, we see that Wi = 0 if
(i) xj = xi and (ii) s0i ¼ s; i ¼ 1;2. Therefore, we seek to
evolve our estimates s0i to minimize Wi, through the fol-
lowing gradient descent relations,

_s0iðtÞ ¼ �ai
@Wi

@s0i
¼ �2ai Hðxjðt � sðtÞÞÞ � H xi t � s0iðtÞ

� �� �� �
� DH xi t � s0iðtÞ

� �� �
_xi t � s0iðtÞ
� �

; ð13Þ

ai > 0, DH represents the derivative of the function H with
respect to its argument. Note that (13) involves knowledge
of the received signal ri(t) = H(xj(t � s(t))), the state xi at the
past time t � s0i

� �
, and its derivative _xi calculated at time

t � s0i
� �

.
We note here that our proposed strategy, Eqs. (6) and

(13), involves the solution of non-autonomous delay differ-
ential equations with state-dependent delays. In this pa-
per, the stability of our strategy is tested via numerical
simulations and provides interesting insights on the viabil-
ity of our proposed approach. Namely, we show its effec-
tiveness for different systems, given that the initial guess
on the time delay is sufficiently close to the actual initial
delay. The sensitivity to the choice of the initial conditions
and to the presence of noise in the communication chan-
nels is investigated in Sections 5 and 6.

3.1. Numerical experiment

In what follows, we consider a numerical experiment,
for which we choose the dynamics of each uncoupled sys-
tem _xi ¼ FðxiðtÞ; tÞ to be described by the forced Van der Pol
equation. We restrict the parameters of the coupled equa-
tions to be such that with no adaption being performed



Fig. 3. We integrate the set of Eqs. (6), (13), and (14) with s evolving according to (16), T = 1, f = 0.5, x = 10�3. We set a1 = a2 = 10�4/2, c1 = c2 = 0.15. From
top to bottom: time evolution of x11(t) and x21(t); synchronization error jx11(t) � x21(t)j; time evolution of s(t) (thin black curve) s01ðtÞ (thick dashed grey
curve), and s02ðtÞ (thick dotted black curve); time evolution of the delay estimation errors, sðtÞ � s01ðtÞ

�� ��; sðtÞ � s02ðtÞ
�� ��. We specify the initial conditions for

(6) to be constant over the time-interval ½��smax;0�, where �smax ¼maxtsmaxðtÞ, and equal to randomly chosen points on the forced Van der Pol chaotic
attractor. Moreover, we set s01ð0Þ ¼ 1:8; s02ð0Þ ¼ 0:20.
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and s01ðtÞ ¼ s02ðtÞ ¼ sðtÞ, the synchronous solution (2) is
stable. This also corresponds to setting a maximum value
on the communication-delay s(t), as stability requires that
s does not exceed the autocorrelation time of an uncoupled
system (for more details, see [42]).

We set xi(t) = [xi1(t),xi2(t)],

Fðxi1ðtÞ;xi2ðtÞ;tÞ¼
xi2ðtÞ

�xi1ðtÞþ8:53xi2ðtÞ 1�xi1ðtÞ2
h i

þ f ðtÞ

" #
;

ð14Þ

where

f ðtÞ ¼ a cosð2pltÞ; ð15Þ

a = 1.2, l = 0.1, and we set H(xi(t)) = xi2(t), Ci = [0,ci].
We integrate the set of Eqs. (6) and (13), with

sðtÞ ¼ T þ f sinðxtÞ; ð16Þ

x = 10�3 and we set T = 1, f = 0.5. We set the initial condi-
tions for (6) to be constant over the time-interval ½��smax;0�,
where �smax ¼maxtsmaxðtÞ and equal to randomly chosen
points on the forced Van der Pol chaotic attractor. We set
s01ð0Þ ¼ 1:8; s02ð0Þ ¼ 0:20 (note that integration of Eqs. (6)
and (13) only requires knowledge of the delay estimates
s0i at the current time t).

The results of our computations are shown in Fig. 3. As
can be seen, the adaptive strategy is successful in synchro-
nizing the oscillators’ states x1 and x2 on a zero-lag syn-
chronous solution, with s01ðtÞ; s02ðtÞ converging on the
true evolution s(t).

4. A decentralized agreement protocol for autonomous
systems

In this section we focus on the case that the two cou-
pled oscillators are autonomous systems, i.e., we replace
_xiðtÞ ¼ FðxiðtÞ; tÞ in Eqs. (6) by _xiðtÞ ¼ FðxiðtÞÞ. For this case,
the existence of only one solution of type (11) can be en-
sured by satisfaction of the extra condition that s01 ¼ s02
(see the discussion in Section 2.1). In order to satisfy this
additional requirement, we introduce a decentralized
agreement protocol between the two platforms that con-
sists in each oscillator i communicating to oscillator
j = (3 � i) its estimate s0i of the unknown delay. With this
modification, each platform j receives at each time two sig-
nals, that is, the signal rj = H(xi(t � s(t))) and the delay esti-
mate s0iðt � sðtÞÞ. With this extra piece of information
available, we reformulate the potential in (12) as follows,

bWiðtÞ ¼ WiðtÞ þ j s0jðt � sðtÞÞ � s0i t � s0iðtÞ
� �h i2

; ð17Þ

i = {1,2}, j = (3 � i), where j > 0 is an appropriate scalar.
Note that in defining (17), we have taken into account
the transmission-time s needed for the estimate s0j to prop-
agate from platform j to platform i. We note that, as we see
from the relations (3) and (5), s evolves on a timescale that



Fig. 4. We integrate the set of Eqs. (6), (18), and (19) with s evolving according to (16), T = 0.3, f = 0.15, x = 10�3. We set a1 = a2 = 10�4/2, c1 = 0.6, c2 = 0.5,
j = 1. From top to bottom: time evolution of x11(t) and x21(t); synchronization error jx11(t) � x21(t)j; time evolution of s(t) (thin black curve) s01ðtÞ (thick
dashed grey curve), and s02ðtÞ (thick dotted black curve); time evolution of the delay estimation errors, sðtÞ � s01ðtÞ

�� ��; sðtÞ � s02ðtÞ
�� ��. We select the initial

conditions for xi1, xi2, xi3 to be constant over the time-interval ½��smax ;0�, where �smax ¼maxtsmaxðtÞ, and equal to randomly chosen points on the Rössler
chaotic attractor, s01ð0Þ ¼ 0:65; s02ð0Þ ¼ 0:10.

40 F. Sorrentino, P. DeLellis / Chaos, Solitons & Fractals 45 (2012) 35–46
is much longer than s itself, thus we do not expect it to
vary much over the propagation-time of the signal. We ob-
serve from (17) that the potential bWi P 0 by definition.
Then, in order for the potential (17) to be zero, it is simul-
taneously needed that Wi equals zero and s0jðt � sÞ equals
s0iðt � s0iÞ. Thus we introduce the following gradient des-
cent relation for evolving the estimates s0i,

_s0i ¼ �ai
@ bWi

@s0i
¼ �2ai Hðxjðt � sðtÞÞÞ � H xi t � s0iðtÞ

� �� �� ��
�DH xi t � s0iðtÞ

� �� �
_xi t � s0iðtÞ
� �

� j s0jðt � sðtÞÞ � s0i
h

� t � s0iðtÞ
� ���

; ð18Þ

ai > 0. Note that (18) involves knowledge of the two re-
ceived signals H(xj(t � s(t))) and s0jðt � sðtÞÞ, along with
knowledge of the state xi, of its derivative _xi, and of the
estimate s0i calculated at the past time t � s0i

� �
. The results

of our computations are shown in Fig. 4. We choose the
dynamics of each individual system to be described by
the Rössler autonomous equation, xi(t) = [xi1(t),xi2(t),xi3(t)],

Fðxi1ðtÞ; xi2ðtÞ; xi3ðtÞ; tÞ ¼
�xi2ðtÞ � xi3ðtÞ

xi1ðtÞ þ 0:2xi2ðtÞ
xi3ðtÞ½xi1ðtÞ � 7� þ 0:2

264
375: ð19Þ

We integrate the set of Eqs. (6), (18), and (19) with
H(xi(t)) = xi1(t), Ci = [ci,0,0]. The unknown delay s evolves
according to Eq. (16) with T = 0.3, f = 0.15, x = 10�3. We
set a1 = a2 = 10�4/2, c1 = 0.6, c2 = 0.5, and j = 1. We select
the initial conditions for xi1, xi2, xi3 to be constant over
the time-interval ½��smax;0�, where �smax ¼maxtsmaxðtÞ, and
equal to randomly chosen points on the Rössler chaotic
attractor, s01ð0Þ ¼ 0:65, s02ð0Þ ¼ 0:10. As can be seen, the
adaptive strategy along with the decentralized agreement
protocol is successful in synchronizing the oscillators’
states x1 and x2 on a zero-lag synchronous solution, with
s01ðtÞ and s02ðtÞ converging on the true evolution s(t).

Furthermore, we have tested the performance of the
adaptive strategy described in this section with respect
to different sets of parameters. We have run numerical
simulations in which we integrate the set of Eqs. (6),
(18), and (19) with j = 1 and s evolving according to
(16), T = 0.4, f = 0.2, x = 10�3. In order to assess the effec-
tiveness of the adaptive strategy we monitor the estima-
tion error,

EiðtÞ ¼ sðtÞ � s0iðtÞ
�� ��: ð20Þ

In Fig. 5 we plot the average estimation error,

hEii ¼ 10�4
Z 2�104

104
EiðtÞdt; ð21Þ

i = 1, as we vary the coupling gains c1 = c2 between the two
systems and the adaptation gains a1 = a2. As can be seen,
the strategy is quite sensitive to the choice of both the cou-
pling gains and the adaptation gains, which suggests that



Fig. 5. We integrate the set of Eqs. (6), (18), and (19) with s evolving
according to (16) with T = 0.4, f = 0.2, x = 10�3. We set k = 1. (a) We plot
the average estimation error hE1i as we vary the coupling gains between
the two systems c1 = c2 with a1 = a2 = 10�4/2. (b) We plot the average
estimation error hE1i as we vary the adaptation gains a1 = a2 with
c1 = c2 = 0.6. In both plots, each point is an average over many different
realizations (i.e., over different choices of the initial conditions for x1 and
x2).

Fig. 6. We integrate the set of Eqs. (6), (13), and (14) with s evolving
according to Eq. (16) with T = 1, f = 0.5, x = 10�3. The main plot shows the
average estimation error hE2i versus the initial mismatch D2. Different
markers are for different values of D1: circles correspond to D1 = � 0.9,
squares correspond to D1 = 0, and asterisks correspond to D1 = 0.9. Each
point is an average over many different realizations (i.e., over different
choices of the initial conditions for x1 and x2); a1 = a2 = 10�4/2,
c1 = c2 = 0.15. The inset shows the effects of the initial conditions on the
decentralized agreement protocol introduced in Section 4. We integrate
the set of Eqs. (6), (18), and (19) with s evolving according to (16), T = 0.4,
f = 0.2, x = 10�3. We set a1 = a2 = 10�4/2, c1 = 0.6, c2 = 0.5, j = 1 and plot
the average estimation error hE2i versus the initial mismatch D2 for
D1 = 0.8.
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these parameters should be carefully tuned in order to ob-
tain a desired or improved performance.

We observe that the use of the approach proposed in
this section is not limited to the reference application of
identifying a time-varying communication-delay between
two autonomously moving platforms. Indeed, the version
of the adaptive strategy that applies to autonomous sys-
tems does not require the presence of synchronized clocks
at the two platforms; hence, it could be used to synchro-
nize two autonomous clocks in the presence of clock drifts
or skews (see [65] for a survey on clock synchronization) or
to estimate propagation delays in an asynchronous code-
division multiple access communication system [66]. As
another possible application, our setup could be used as
a bistatic radar, where one platforms (acting as a transmit-
ter) communicate a signal to the other one (acting as a re-
ceiver) in the presence of a moving target. In this case,
knowledge of the time delay for the signal to bounce off
the moving target and reach the receiver could be used
to extrapolate information on the position of the target.
5. Effects of the initial conditions

In this section, we investigate the effect of the choice of
the initial conditions s01ð0Þ; s02ð0Þ

� �
on the successfulness

of our adaptive strategy. We consider that the dynamics
of an uncoupled system is described either by the forced
Van der Pol equation (14) or the Rössler equation (19).
We choose s01ð0Þ ¼ sð0Þ þ D1, s02ð0Þ ¼ sð0Þ þ D2, where Di

is a measure of how off our initial guesses s0i are with re-
spect to the true value of s(0). We select the initial condi-
tions for xi to be constant over the time-interval ½��smax;0�,
where �smax ¼maxtsmaxðtÞ, and equal to randomly chosen
points on the chaotic attractor. The main plot in Fig. 6
shows the results of numerical simulations in which Eqs.
(6), (13), and (14) are integrated for a long time, H(xi(t)) = -
xi2(t), Ci = [0,ci], a1 = a2 = 10�4/2, and c1 = c2 = 0.15. At each
time t, we monitor the estimation error hE2i defined in Eq.
(21) versus the initial mismatch D2 for different values of
D1: circles correspond to D1 = �0.9, squares correspond
to D1 = 0, and asterisks correspond to D1 = 0.9. Each plotted
point is averaged over many different realizations, i.e., over
different choices of the initial conditions for x1 and x2 (con-
stant over the time-interval ð½��smax;0�Þ). As can be seen, for
0 6D2 [ 1.2, our strategy is able to produce good esti-
mates of the unknown time-varying delay s(t) within the
time-span of our simulations (2 � 104). We remark that
for D1 in the interval �0.5 6 D1 6 0.5 (which represents a
variation of up to ±50% on our initial guess with respect
to the true value of s(0) = 1), the results of our computa-
tions are very similar to the case of D1 = 0.

In the inset of Fig. 6 we investigate the effects of the ini-
tial conditions on the decentralized agreement protocol
introduced in Section 4. We take the individual systems
to be Rössler oscillators (19); we set D1 = 0.8 and plot the
average estimation error hE2i versus the initial mismatch
D2. As can be seen, for �0.4 [ D2 [ 1.5, the adaptive strat-
egy is able to produce good estimates of the unknown
time-varying delay s(t) within the time-span of our simu-
lations (2 � 104).
6. Effects of noise

In this section we consider the presence of noise in the
communication channels between the two platforms. We
assume additive noise and we replace ri in (6b) by,



Fig. 7. The figure shows the results of numerical integration from t = 0 to
t = 104 of the set of Eqs. (6), (19), (22), and (28), corresponding to our
alternative formulation of the adaptive strategy for autonomous systems,
H(xi(t)) = xi1(t) and Ci = [ci,0,0]. s(t) evolves according to Eq. (16), with
T = 0.3, f = 0.15, x = 10�3. We set a1 = a2 = 10�4/2, c1 = 0.6, c2 = 0.5, j = 1.
We record the average estimation error hE2i for increasing values of the
noise ratio r/rx, where r = r1 = r2 and rx = 5.5 is the standard deviation
of the time evolution of H(xs1). Squares correspond to m = 1.5 and
diamonds to m = 3. Circles correspond to runs in which the same
simulation is repeated for our original formulation of the adaptive
strategy, Eqs. (6) and (13). Each point is an average over many different
realizations, i.e., over different choices of the initial conditions for x1 and
x2 (constant over the time-interval ½��smax;0�).
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riðtÞ ¼ Hðxjðt � sðtÞÞÞ þ
ffiffi
s
p

ri�iðtÞ; ð22Þ

where �i(t) is a zero-mean independent random number of
unit variance drawn from a Gaussian distribution, ri is a
multiplicative factor, and s is the time step of our integra-
tion method.

To better deal with the presence of noise in the received
signals, we propose an alternative formulation of our adap-
tive strategy for which the potential (12) is replaced by,

eWiðtÞ ¼ m
Z t

e�mðt�hÞ riðhÞ � H xi h� s0iðhÞ
� �� �� �2 dh: ð23Þ

From (23) we see that eWi is an exponential moving average
of the squared synchronization error with averaging time
m�1. We require m�1 to be larger than Tx, the characteristic
timescale on which an uncoupled system evolves, and to
be smaller than Tp, the timescale on which the communica-
tion-delay changes,

Tx < m�1 < Tp: ð24Þ

Note that eWi P 0 and eWi ¼ 0 only if x1 = x2 and s0i ¼ s (see
Section 2.1 for a more detailed discussion).

Following our previous derivations, the equations for
the alternative adaptive strategy are,

_s0i ¼ �ai
@ eWi

@s0i
¼ �2aini; ð25Þ

where ai > 0, and

niðtÞ ¼m
Z t

e�mðt�hÞ riðhÞ � H xi h� s0iðhÞ
� �� �� �

DH _xi h� s0iðhÞ
� �

dh: ð26Þ

We observe that the quantity ni in (26) obeys the following
differential equation,

_niðtÞ ¼ �mniðtÞ þ m riðtÞ � Hðxiðt � s0iðtÞÞÞ
� �

DH _xi t � s0iðtÞ
� �

:

ð27Þ

Thus our alternative adaptive strategy is completely de-
scribed by the set of Eqs. (6a), (22), (25), and (27). We note
that with respect to the original formulation, the alterna-
tive strategy requires integration of an additional differen-
tial equation at each platform.

We have also considered the effects of noise on the
decentralized agreement protocol introduced in Section 4.
For this case, Eq. (18) is replaced by

_s0i ¼ �2aini;

_ni ¼ �mni þ riðtÞ � H xi t � s0iðtÞ
� �� �� �

DH xi t � s0iðtÞ
� �� ��

� _xiðt � s0iðtÞÞ � j ~sjðt � sðtÞÞ � s0i t � s0iðtÞ
� �� ��

;

ð28Þ

i ¼ 1;2; j ¼ 3� i; ai > 0; ~sjðt � sðtÞÞ ¼ s0jðt � sðtÞÞþffiffi
s
p

ri�iðtÞ, with s, ri, and �i being the same as in Eq. (22).
In Fig. 7 we show the results of numerical experiments

involving two coupled chaotic Rössler oscillators. We inte-
grate the set of Eqs. (6), (19), (22), and (28), corresponding
to our alternative formulation of the adaptive strategy for
autonomous systems. We consider that the communica-
tion-delay s slowly varies in time according to Eq. (16),
with T = 0.3, f = 0.15, x = 10�3 (see the figure caption for
the simulation parameters). We record the average estima-
tion error hE2i for increasing values of the noise ratio r/rx,
where r = r1 = r2 and rx = 5.5 is the standard deviation of
the time evolution of H(xs1). Squares correspond to m = 1.5
and diamonds to m = 3. Circles correspond to runs in which
the same simulation is repeated for our original formula-
tion of the adaptive strategy, Eqs. (6) and (18). As can be
seen, for low noise (low values of r) the original adaptive
strategy and the modified adaptive strategy (for both cases
of m = 1.5 and m = 3) produce similar results. As r is in-
creased, the average estimation error hE2i grows. For large
enough noise r(r J 0.12rx), the modified adaptive strat-
egy outperforms the original adaptive strategy.

7. A strategy for simultaneously estimating the
communication-delay and the signal amplitude

In the previous sections we have shown that a suitable
adaptive strategy based on synchronization of chaos can be
used to estimate an unknown communication-delay be-
tween two coupled systems and achieve synchronization
between them. As a reference application, we have pro-
posed that such a strategy could be used to estimate the
relative distance between two autonomously moving
platforms.

Another aspect that we have not taken into account is
that in our reference application the amplitude of the
signal received at each platform could be unknown and
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time-varying as well. One viable strategy could be to try to
infer the unknown amplitude from the delay. In this sec-
tion, we will show that the adaptive strategy proposed in
Section 4 can be effectively extended to simultaneously
and independently estimate the unknown communica-
tion-delay and the unknown amplitude, even when they
evolve independent of each other and in a noisy environ-
ment. We wish to emphasize that an adaptive strategy to
estimate the amplitude of the signal alone has already
been studied in [34,47] and experimentally tested in [48–
50].

In order to take into account the effect of the unknown
time-varying amplitude of the signal received at each plat-
form, we replace Eq. (6) by the following,

_xiðtÞ ¼ FðxiðtÞÞ þ Ci riðtÞ � A0iðtÞH xi t � s0iðtÞ
� �� �� �

; ð29aÞ
riðtÞ ¼ AðtÞHðxjðt � sðtÞÞÞ; ð29bÞ

i = {1,2}, j = (3 � i), where both the amplitude A(t) and the
communication-delay s(t) are unknown and slowly-evolv-
ing in time and A0iðtÞ is an estimate at platform i of the un-
known amplitude A(t). Again, we assume that the two
platforms are coupled in line of sight, so that it can be as-
sumed that the attenuation of the signal from platform i to
platform j is the same as that from platform j to platform i
and that the communication-delay is the same in both
directions.

We now seek to obtain an adaptive strategy to simulta-
neously and independently estimate at each platform both
the unknown amplitude A(t) and the communication delay
s(t). We assume that the two chaotic systems at each plat-
form are autonomous, thus we use a decentralized agree-
ment protocol similar to the one presented in Section 4.
Similar to Section 4, we introduce at each platform i a
potential,

bWiðtÞ ¼ AðtÞHðxjðt � sðtÞÞÞ � A0iðtÞH xi t � s0iðtÞ
� �� �� �2

þ j AðtÞs0jðt � sðtÞÞ � A0iðtÞs0iðt � s0iðtÞÞ
h i2

: ð30Þ

Note that bWi P 0 and bWi ¼ 0 only if x1 ¼ x2; s0i ¼ s, and
A0i ¼ A. The latter follows from the observation that H(xi)
and H(xj) are chaotic and rapidly evolving in time, while
A(t) and A0iðtÞ can be considered constant over the time-
scale on which chaos evolves. Then the only way that the
first term on the right hand-side of (30) can be set equal
to zero independent of time is for A0i ¼ A, for which case
A0i ¼ A can be factored out of the square brackets in (30).
Then the condition for bWi ¼ 0 is that both the terms in
the square brackets are equal zero, yielding x1 = x2, and
s0i ¼ s (for more details, see Section 2.1).

Thus we seek to formulate an adaptive strategy that
seeks to evolve A0iðtÞ and s0iðtÞ in such a way to minimize
the potential (30). To this aim, we introduce the following
gradient descent relations,

_A0i ¼ �bi
@ bWi

@A0i
¼ 2bi AðtÞHðxjðt � sðtÞÞÞ � A0iðtÞ

��
� xi t � s0iðtÞ

� �� ��
H xi t � s0iðtÞ

� �� �
þ j AðtÞs0jðt � sðtÞÞ

h
�A0iðtÞs0iðt � s0iðtÞÞ

�
s0iðt � s0iðtÞÞ

�
; ð31aÞ
_s0i ¼ �ai
@ bWi

@s0i
¼ �2ai AðtÞHðxjðt � sðtÞÞÞ

��
�A0iðtÞH xi t � s0iðtÞ

� �� ��
A0iðtÞDH xi t � s0iðtÞ

� �� �
_xi t � s0iðtÞ
� �

�j AðtÞs0jðt � sðtÞÞ � A0iðtÞs0i t � s0iðtÞ
� �h i

A0iðtÞ
o
; ð31bÞ

with ai, bi > 0, i = {1,2}.
We have numerically tested the adaptive strategy de-

scribed by Eqs. (29) and (31) with s(t) evolving according
to Eq. (16) with T = 0.3, f = 0.15 and A(t) evolving according
to the following equation,

AðtÞ ¼ Aþ g sinðxAtÞ; ð32Þ

with A = 1, g = 0.1, xA = 5 � 10�4. We choose each individ-
ual system to be a chaotic Rössler oscillator (19), H(xi(t)) = -
xi1(t) and Ci = [ci,0,0]. We set a1 = a2 = b1 = b2 = 10�4,
c1 = 0.6, c2 = 0.5, j = 1. The results of our numerical exper-
iment are shown in Fig. 8. As can be seen, after a transient
the adaptive strategy is able to track the time-evolutions of
both s(t) and A(t). Also, the time evolutions of x1(t) and
x2(t) are synchronized (not shown). Note that the strate-
gies to estimate the unknown delay and amplitude (given
in Eqs. (31a) and (31b)) are run simultaneously and inde-
pendently of each other.
8. Discussion

Our strategies described in this paper take advantage of
the properties of chaotic sequences of never repeating in
time. Another way of generating long non-repeating
time-traces is to consider sequences of independent ran-
dom numbers. For example, consider the N-random
sequence

SðnÞ ¼
0; with probability p;

1; with probability 1� p:



ð33Þ

n = 0,1, . . . ,N, with 0 6 p 6 1. Then if we select two s-inde-
pendent random sequences as defined in (33), we can com-
pute the probability P that they are the same,
P = (1 � 2p(1 � p))N. It is easy to see that unless p = 0 or
p = 1, P tends to 0 as N tends to infinity. Hence it is very un-
likely to produce two random sequences that are the same.

A way of getting around this problem, is to rely on a
pseudorandom number generator, that is, a deterministic
algorithm for generating a sequence of numbers that
approximates the properties of random numbers. Such an
algorithm requires initialization by a relatively small set
of initial values, called the seed. Two sequences that are ini-
tialized by the same seed are identical. The seed plays the
same role as the initial condition of a chaotic dynamical
system and indeed a way of producing pseudorandom se-
quences is to use an underlying deterministic chaotic pro-
cess [67–69]. In this respect, the use of a pseudorandom
algorithm could represent a valid alternative to the use
of a chaotic dynamical system for the delay-identification
problem discussed in this paper.

However, the key-property that we present and exploit
in this paper is that two chaotic dynamical systems, even if
initialized from two different initial conditions, can be syn-
chronized, i.e., by introducing an appropriate feedback



Fig. 8. The figure shows the results of numerical integration from t = 0 to t = 2 � 104 of the set of Eqs. (29), (19), and (31), corresponding to the version of the
adaptive strategy for simultaneously estimating the communication-delay and the signal amplitude, H(xi(t)) = xi1(t) and Ci = [ci,0,0]. s(t) evolves according
to Eq. (16), with T = 0.3, f = 0.15; A(t) evolves according to Eq. (32), with A = 1, g = 0.1, xA = x/2 = 5 � 10�4. We set a1 = a2 = b1 = b2 = 10�4, c1 = 0.6, c2 = 0.5,
j = 1. From top to bottom: time evolution of s(t) (thin black curve), s01ðtÞ (thin grey curve), and s02ðtÞ (thick dotted black curve); time evolution of the delay
estimation errors, sðtÞ � s01ðtÞ

�� ��; sðtÞ � s02ðtÞ
�� ��; time evolution of A(t) (thin black curve), A01ðtÞ (thin grey curve), and A02ðtÞ (thick dotted black curve); time

evolution of the amplitude estimation errors, AðtÞ � A01ðtÞ
�� ��; AðtÞ � A02ðtÞ

�� ��. We select the initial conditions for xi1, xi2, xi3 to be constant over the time-interval
½��smax;0�, where �smax ¼maxtsmaxðtÞ, and equal to randomly chosen points on the Rössler chaotic attractor, s01ð0Þ ¼ 0:7; s02ð0Þ ¼ 0; A01ð0Þ ¼ 0:6; A02ð0Þ ¼ 1:4.

44 F. Sorrentino, P. DeLellis / Chaos, Solitons & Fractals 45 (2012) 35–46
mechanism, they can be maintained in a stable synchro-
nized chaotic time-evolution [1,7,8]. Furthermore, it has
been shown that even in the presence of slight non-identi-
cality between the coupled systems and slight deviations
from nominal conditions, a stable approximately synchro-
nous evolution can be reached and maintained in time
[12–17]. Thus the use of a closed-loop architecture has
the following advantages:

(i) The two systems do not need to be initialized with
the same initial condition, i.e., a-priori knowledge
of a seed is not required.

(ii) The mechanism is robust with respect to noise and
slight deviations from nominal conditions, such as
slight non-identicality in the individual systems,
slight variations in the amplitude of the received sig-
nal, or slightly different environmental conditions.

To conclude, the advantage of our chaos-synchroniza-
tion strategy is that it relies on a closed-loop architecture
that allows to maintain synchronization between two dis-
tant systems even in the presence of noise and non-identi-
cality in the individual systems or mismatches in the initial
conditions.

On the other hand, noise or small mismatches in the
parameters of the individual chaotic systems being cou-
pled can be responsible for the onset of bubbling [12,70–
72], i.e., rare intermittent large deviations (bursts) from
synchronization. Bubbling occurs when the synchronized
state is stable for typical chaotic orbits but is unstable for
certain unstable periodic orbits within the synchronized
chaotic attractor. Consider for example the set of Eqs. (6)
and (18). For the case of constant s, these equation allow
an invariant set, the so-called synchronous manifold
(SM), defined as x1(t) = x2(t), s01 ¼ s02 ¼ s. Stability of the
SM with respect to infinitesimal transversal perturbations
can be quantified in terms of the maximum transverse
Lyapunov exponent (MTLE) of the system. Now assume
the MTLE is negative, implying that stability is observed
for any initial condition on the attractor. However, in the
presence of either noise, or small mismatches in the
parameters of the individual systems, or even a slowly
time-varying s(t), it is possible that the trajectory eventu-
ally gets close to an unstable periodic orbit embedded in
the attractor having an associated positive MTLE. If this
happens, the trajectory may be repelled away from the
SM and eventually return close to the SM after some time,
giving rise to a burst. This phenomenon is called bubbling
[70,71]. In [72] bubbling is observed for a network of cou-
pled dynamical systems, each of which independently
implements an adaptive strategy to maintain synchroniza-
tion. Analogously, we expect bubbling to eventually arise
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(depending on the choice of the equation parameters), for
the problem described by Eqs. (6) and (18), i.e., for a case
in which two coupled systems implement an adaptive
strategy to estimate a communication-delay. In particular,
bubbling is likely to arise in the case in which the unknown
delay is time-varying, as mismatches in the delay estimate
s0iðtÞ � sðtÞ
�� ��, no matter how small they are, may generate
it.
9. Conclusions

In this paper, we considered synchronization of two
bidirectionally coupled chaotic systems that communicate
with an unknown time-varying delay. We presented a non-
linear adaptive strategy to simultaneously identify the
time-varying communication delay and achieve
synchronization.

To achieve the twofold goal of synchronizing the cha-
otic systems and identifying the unknown delay, we pro-
posed an adaptive strategy based on the minimization of
an appropriately defined potential through a gradient des-
cent technique (see also [34,47,48]). The proposed strategy
is presented in two alternative formulations to deal with
either non-autonomous or autonomous systems. The ver-
sion for non-autonomous systems requires the presence
of two perfectly synchronized internal clocks at the two
platforms, while the version for autonomous systems is
based on a decentralized agreement protocol, i.e., on
exchanging information on the respective delay-estimates
between the two platforms.

As a reference application, we have considered the prob-
lem of identifying the communication-delays between two
autonomous moving platforms. We have assumed that
two identical chaotic oscillators are installed at each plat-
form and that these chaotic systems seek to synchronize
via a signal broadcast from one platform to the other (and
viceversa). Moreover, we have assumed that the signal is
transmitted with an unknown communication-delay that
depends on the distance between the platforms. Our strat-
egy could be used to dynamically estimate at each platform
the distance at which the other platform is at any given time.

The effectiveness of the proposed approach has been
illustrated by means of extensive numerical simulations,
showing that the adaptive strategy can be effective in syn-
chronizing the chaotic systems and in correctly estimating
the time-varying communication-delay. Another advan-
tage of our approach is that in addition to estimating the
communication-delay, the adaptive strategy could be used
to simultaneously identify other parameters (see, e.g.,
[30,34,45,47]). For example, in Section 7 we have shown
that the adaptive strategy is effective in simultaneously
and independently estimating the unknown time-varying
communication delay and the unknown time-varying
amplitude of the received signal.

To investigate the robustness of the proposed approach,
we have numerically tested the performance of our strat-
egy with respect to the choice of the initial conditions.
We have also investigated the effects of noise in the com-
munication channels between the platforms and proposed
an appropriately modified adaptive strategy for which a
relevant enhancement of the performance has been ob-
served in the presence of noise.

Our adaptive strategy (especially in its version for non-
autonomous systems) could be useful in applications as
different as the identification of communication delays be-
tween moving platforms, clock synchronization, the esti-
mation of propagation delays in an asynchronous code-
division multiple access communication system, and the
localization of a mobile target through a bistatic radar sys-
tem. However, a main limitation to our approach seems to
be that for some applications (e.g., clock synchronization in
a computer network) the communication delays may be
asymmetrical (i.e., different in the two directions from i
to j and from j to i). The condition of symmetrical delays,
which holds for line of sight communication, seems to be
relevant to the formulation of our strategy that applies to
autonomous systems. How to extend the strategy for
autonomous systems to the case of asymmetrical delays
is the subject of ongoing investigations. One viable ap-
proach would be to increase the amount/type of informa-
tion that the platforms are allowed to exchange. As a
reference for future work, we also note the importance of
testing our strategy with systems displaying larger com-
plexity than the simple Van der Pol and Rössler oscillators
considered in this paper (e.g., systems of interest for prac-
tical applications).
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