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In this paper, we present an approach in which synchronization of chaos is used to address identification
problems. In particular, we are able to identify (i) the discontinuity points of systems described by piecewise
dynamical equations and (ii) the delays of systems described by delay differential equations. Delays and
discontinuities are widespread features of the dynamics of both natural and manmade systems. The foremost
goal of the paper is to present a general and flexible methodology that can be used in a broad variety of

identification problems.
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I. INTRODUCTION

A technique to reconstruct the full state vector of a chaotic
system from the time series of a single observed scalar was
proposed in [1]. Recent work [2—4] has shown that synchro-
nization of chaos can be used as a powerful tool to identify
the dynamical equations of unknown systems. For instance,
in [4] a largely unknown chaotic system was coupled to a
model system and an adaptive strategy was proposed to
make them synchronize by adaptively varying the parameters
of the model until they converge on those of the true system.
This strategy relies on the assumption that the equations of
the true system can be written as linear combinations in a set
of unknown scalar parameters {a;},

(1) = 2 an[x(n)], (1)

where x(r) is the known n-state of the system at time ¢,
N\;:R"—R" is a set of known (non)linear functions of x (an
analogous description of the dynamics can be considered for
discrete time systems).

The case of Eq. (1) is also considered in Ref. [3], where a
general linear independence condition is presented that
needs to be satisfied in order to identify the parameters of
interest. The references in Ref. [2] propose a technique to
reconstruct the parameters of unknown chaotic systems in
both computer simulations and experiments from knowledge
of their dynamical time evolution. Yet, the problems of iden-
tification of unknown delays and discontinuity points of cha-
otic systems have received little attention so far.

An important observation is that in terms of our proposed
problem, dealing with chaotic systems represents an advan-
tage; in fact, since a chaotic time trace never repeats in time,
it provides an infinite amount of information that can be used
by the identification strategy. On the other hand, a disadvan-
tage is that stability of synchronization of chaotic systems is
usually evaluated locally about the synchronized evolution
and for the parameters of the systems being the same (i.e., it
relies on the successfulness of the identification strategy).
Therefore, the effectiveness of the strategy may be sensitive
to the choice of the initial conditions and it may depend on a
careful selection of the adaptive strategy parameters.
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Chaos can arise in systems whose dynamics is described
by delay dynamical equations or by piecewise linear and
piecewise differentiable equations. These are both very com-
mon situations in nature and in applications. For example,
piecewise dynamical equations characterize mechanical sys-
tems with impacts [5], relay-feedback systems [6], and dc/dc
converters [7]. Delay dynamical equations are usually in-
voked to describe physiological processes in hematology,
cardiology, neurology, and psychiatry [8]; but find applica-
tion also in chemistry, engineering and technological systems
[9]; examples are lasers subject to optical feedback [10],
high-speed machining [11], mechanical vibrations [12], con-
trol engineering [13], and traffic flow models [14]. Our goal
is introducing a flexible adaptive strategy that can be used to
identify either discontinuity points or delays of the equations
of unknown chaotic systems from knowledge of their state
evolution. To our knowledge, the use of adaptive strategies to
deal with these two interesting and important problems has
not been considered yet in the literature (note that adaptive
strategies become particularly useful when the unknown pa-
rameters to be identified are time dependent). More in gen-
eral, the paper presents a general methodology that can be
used to address a broad variety of identification problems,
including apparently difficult ones.

The case of Eq. (1), in which the unknown parameters to
be estimated (the {a;}) appear in the equations of the un-
known system as the coefficients of a linear combination is
quite specific. A broader class of problems includes identifi-
cation of parameters that cannot be written in the form of the
a; in Eq. (1). Estimation of such parameters is the subject of
the present paper; in particular, we present two examples in
which we deal with estimation of discontinuity points and
delays. In Sec. II, we address the problem of identifying
discontinuity points of unknown piecewise dynamical sys-
tems. In Sec. III, we address the identification of delays of
unknown dynamical systems. Finally, in Sec. IV, the conclu-
sions are presented.

II. IDENTIFICATION OF DISCONTINUITY POINTS

In this section, we deal with the problem of identifying
discontinuity points of piecewise dynamical systems. We
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present a fully nonlinear approach that can be used to extract
the discontinuity points of these systems from knowledge of
their dynamical time evolution. We consider both the cases,
in which the unknown true system evolves in discrete and in
continuous time.

As a first (simple) problem, we consider that the unknown
true system is described by a piecewise dynamical equation
and evolves in discrete time. In particular, we assume that
the unknown system evolution obeys,

= f (), (2)

where x* € R, f,(x):R—R is a piecewise differentiable func-

tion,
fiix), if gx) =o,
f(,(x)—{. (), if £&)

f1(x), otherwise,

3)

where f/(x):R—R, f/(x):R—R, and g(x):R—R are C'
functions and o is a scalar. For simplicity (and without loss
of generality), for this first example, we assume that the true
system state x is a scalar quantity. The more general case that
the state is n dimensional is discussed next for the case of a
continuous time system.

Our goal is to identify the unknown parameter o from
knowledge of the temporal evolution x*. To this aim, we seek
to model the dynamics of the true system by

Y =fo (7). (4)

where o’ is an estimate of the unknown true coefficient o,
and y is defined as

V=o' +(1- e, (5)

e R. Note that the model is coupled to the true system
through x* in Eq. (5). We proceed under the assumption that
the value of € in Eq. (5) is such that when ¢’ =0, the syn-
chronized solution y=x, is stable. Our strategy (to be speci-
fied in what follows) seeks to synchronize the model to the
true systems, by dynamically adjusting ¢’ to match the un-
known true value of 0. We now introduce the following po-
tential,

qu[X—y]z, (6)

V=0 by definition; ¥'=0 when y=x, that is, when the true
system and the model system are synchronized. Thus, we
seek to minimize the potential (i.e., to achieve synchroniza-
tion between the two systems) by dynamically adjusting the
estimate ¢’ through the following gradient descent relation,

v ay*
R E S BAIE 27 P
Jdo Jdo
(7)
7>0. We note that the term p*= dy*/do’ appears in Eq. (7);
therefore, we seek to find a recurrence equation that de-

scribes the evolution of p* in time. Equation (4) can be re-
written as
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Y = AFYHI = (91 + 1O - HIo' - (9T
(8)

where H is the Heaviside step function, H(z)=1 if z=0, 0
otherwise. In what follows, we will seek to compute the de-
rivative of the right hand side of Eq. (8) with respect to o”'.
However, the function H[o’'—g(5)] is not differentiable
with respect to o’ at o' =g(7%). To overcome this difficulty,
we introduce the replacement,

dH(2)/dz — 6,(2), )
where 8,,(z) is the triangular function,
8,(2) = @™ max(1 - |z/w],0), (10)

w# 0. Note that the replacement Eq. (9) introduces an ap-
proximation in the equations of the adaptive strategy [though
other approximations are possible, our numerical simulations
show that the replacement Eq. (9) is one convenient choice].
In particular, Eq. (9) corresponds to assuming that in the
model system the transition between f/ and f occurs con-
tinuously as a function of ¢’ [while the transition is actually
discontinuous in Eq. (4)]. However, we note that if the iden-
tification strategy is successful, i.e., for o’=0, our model
[Eq. (4)] is the same as the true system [Eq. (2)], implying
that a state of complete synchronization, y=x, exists; when
this synchronous state is achieved, o’*'-o"¥=0 in Eq. (7),
i.e., the adaptive strategy is in turn deactivated. Thus, our
hope is that though our strategy uses an approximate descrip-
tion of the model system, it will converge onto the desired
synchronous state.

By using (9), we can now write the following recurrence
equation for pk,

pk+l — akpk+ bk, (1 la)

with
d' = D (F)H[o" - g(79)]+ D" (79){1 - H[o' - g(FH)]}
+[1GY) - FEY]6.L0" - e(HIDg(7)}, (11b)

V=[G - 191800’ - ()]

Note that Eq. (11a) is an auxiliary difference equation that
completes the formulation of our adaptive strategy [de-
scribed by the set of Egs. (4), (7), and (11)]. In fact, by
iterating the set of Egs. (4), (7), and (11) and by using knowl-
edge of the time evolution of the true system state x;, we
obtain a time evolving estimate ¢’ of the unknown quantity
.

Figure 1 shows the results of a numerical experiment in
which Eq. (3) is the tent map equation, f/(x)=pux, f7(x)
=u(1-x), u=1.4, and 0=0.6. For these values of the param-
eters, the tent map dynamics is chaotic. Moreover, we choose
gx)=x, h(x)=x, €=0.4, and w=0.1. We initialize both the
true system and the model from uniformly distributed ran-
dom initial conditions between 0 and 1, and o’ is evolved
from an initial estimate that is far away from the true value
of o, i.e., ¢’(0)=0.4. Figures 1(a) and 1(b) show the time
evolutions of x* (in black, thin line) and y* (in gray, thick
line), respectively, at the beginning (k € [0,50]) and at the

(11c¢)
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FIG. 1. (a) and (b) show the time evolutions of x* (in black, thin
line) and y* (in gray, thick line) respectively at the beginning (k
€[0,50]) and at the end (k €[99 950, 100 000]) of the run [in (b)
the two curves are superposed]. Plot (c) shows |x*—y¥| versus k. (d)
shows the time evolution of ¢’* (in gray), which converges to the
true value of ¢=0.6 (in black, thin line). f/(x)=ux, f(x)=pu(1
—x), u=14, g(x)=x, h(x)=x, €e=0.4, n=10"*, and w=0.1.

end (k €[99 950, 100 000]) of the run [in Fig. 1(b) the two
curves are superposed]. Figure 1(c) is a plot of the synchro-
nization error [x*—y*| versus k, from which we see that the
adaptive strategy is successful in achieving synchronization
between the true and the model systems. Figure 1(d) shows
the time evolution of o’ converging to the true value of o
=0.6.

We also investigate how the choice of the parameter w in
Eg. (10) affects the identification strategy [Eq. (10) is even in
w, so we will only consider w>0]. While our strategy re-
quires >0 in Eq. (10), it is clear that the larger the w, the
worse our model (4) approximates Eq. (2), for o’ # o. There-
fore in what follows, we will make use of numerical simu-
lations to test how the choice of w in Eq. (10) affects the
performance of our strategy.

This is shown in Fig. 2(a), where the same simulation in
Fig. 1 is repeated as the parameter w is varied. The equations
are integrated for a long time. The thick line is a plot of (r},
the final value of o estimated by the adaptive strategy at the
end of each run, versus w, while the thin dotted line is the
true 0=0.6-th ordinate line. As can be seen, the strategy is
effective in estimating the unknown value of o, for 1072
<w=5X10"". An interesting result that we observe is the
failure of our strategy for small values of w. To better under-
stand this phenomenon, we have run other numerical simu-
lations for the case that o’ (0) = o and we have found that for
small values of w the synchronized solution is unstable with
respect to infinitesimal (small) perturbations. Figure 2(b) is a
plot of the average synchronization error {|x—y|) calculated
from integration of Egs. (2)—(5), versus o’ assumed constant,
for the case that true value of o has been set to 0.6. The
plotted synchronization error is averaged over a long time
and the initial transient, which reflects the choice of the ini-
tial conditions, is neglected. As can be seen, the average
synchronization error is characterized by a sharp minimum at
o’ =0, and it rapidly increases with |0’ —a].
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FIG. 2. (a) The same simulation in Fig. 1 has been repeated as
the parameter w is varied. The thick line is a plot of o-}, the final
value of o' estimated by the adaptive strategy at the end of each
run, versus w, while the thin dotted line is the o=0.6-th ordinate
line. (b) is a plot of the average synchronization error {|x—y|) cal-
culated from integration of Egs. (2)—(5), versus ¢’ assumed con-
stant, for the case that true value of o has been set to 0.6. The
plotted synchronization error is averaged over a long time and the
initial transient is neglected. All the simulation parameters are the
same as in Fig. 1.

As a second problem, we consider that the unknown sys-
tem evolves in continuous time and is n dimensional. We
assume that the system dynamics is described by the Chua
equation, n=3, x(t)=[x,(t),x,(¢) ,x5()]7, x(1)=F [x(1)],
a{xy(1) — x1(1) — P lx,(1) ]}

x1(1) = x5(1) + x5(2) , (12)

— Bxy(2)

where the piecewise scalar function ¢,(x) is defined as,

Fox) =

mx+o(my—my), x=ao

bolx) =) mox, <o (13)
mx —o(mg—my), x=-o0.

For our choice of a=15.6, =25.58, my=-8/7, and m,
=-5/7, the Chua system (12) and (13) displays chaos (the
emergence of a chaotic “double scroll” attractor has been
observed both in numerical simulations and in experiments
[15]). In the case of Eq. (13), the function ¢,(x) has two
discontinuity points, i.e., at = o¢. In the general case in which
v discontinuity points are present, v independent gradient
descent relations can be derived for each of the points and
simultaneously integrated [together with other v correspond-
ing auxiliary equations, analogous to Eq. (11)] in order to
identify them all. Yet, in the case of the Chua system (12),
the problem can be simply formulated in the only unknown
o (i.e., we rely on the fact that the two discontinuity points
are symmetrical with respect to zero).

We assume to model the true system by y(r)
=[y,(0),v,(t),y5(O)]7, y(t)=F.[y(1)], where ¢’ is an estimate
of the unknown true parameter o. We design an adaptive
strategy to dynamically adjust o’ to match the unknown
value of o. To this aim, we perform a one way diffusive
coupling from the true system to the model, as follows,

y(0) =Fy (y(1)) + T[A(x(1)) = h(y ()], (14)

where h(x) is in general an m=n vector of m observable
scalar quantities that are assumed to be known functions of
the system state x. I" is an n X m constant coupling matrix. In
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what follows, we assume for simplicity that & is a scalar
function (m=1), h(x)=x,, and I'=[y,0,0]7, and we proceed
under the assumption that the value of 7 is such that when
o' =0, the synchronized solution, y=x, is stable. We intro-
duce the following potential,

W =[h(x) - h(y)T. (15)

Again, ¥ =0 by definition, and V=0 if A(y)=h(x), that is,
when the true system and the model system are synchro-
nized. Thus, we seek to minimize the potential by adaptively
evolving ¢’ according to the following gradient descent re-
lation,

v 9
&' ==& =200h(x) - )Py~

= 2{[h(x) - h(y)IDh(y)q, (16)

{>0. Note that for our choice of &, Dh=[1,0,0], yielding
Dhq=gq,, where ¢, is the first component of the vector q.
Therefore, we seek a differential equation that describes how
q1=4dy,/do’ evolves in time. We note that ¢, can be rewrit-
ten as,

Do (y1) =mgy; + (my —mo)[H(= 0" =y )y, + o)
+H(y, - a')y, = o')]. (17)

Then, from Egs. (14) and (17), we obtain the following aux-
iliary differential equation for ¢,

q:(1) = c(t)g, (1) + d(2), (18a)
where
c(t)==y=af{l + mg+ (m; —mo)[H(- 0" = y))
+HO -]}, (18b)
d(t) == alm; —mo)[H(- 0’ = y) = H(y; - o’)].
(18¢)

Our adaptive strategy is then fully described by the set of
Egs. (14), (16), and (18). Figure 3 shows the results of a
numerical experiment, in which we have integrated Eqgs.
(12), (14), (16), and (18). Both the true and the model sys-
tems are initialized from uniformly distributed random initial
conditions on the Chua chaotic attractor, and ¢’ is evolved
from an initial value that is far away from the true value of
o=1, i.e., d'(0)=2.5, ¢,(0)=0. Figures 3(a) and 3(b) show
the time evolutions of x,(z) (in black, thin line) and y,(¢) (in
gray, thick line), respectively, at the beginning (1 €[0,30])
and at the end (7 € [470,500]) of the run [in Fig. 3(b) the two
curves are superposed]. Figure 3(c) is a plot of the synchro-
nization error |x,(¢)—y,(¢)| versus t, from which we see that
the adaptive strategy is successful in achieving synchroniza-
tion between the true and the model systems. Figure 3(d)
shows the time evolution of o converging to the true value
of o=1.

II1. IDENTIFICATION OF DELAYS

Hereafter, we consider a completely different identifica-
tion problem, in which the dynamics of the system to be
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FIG. 3. (a) and (b) show the time evolutions of x;(¢) (in black,
thin line) and y,(#) (in gray, thick line) respectively at the beginning
(r[0,30]) and at the end (¢ € [470,500]) of the run [in (b) the two
curves are superposed]. Plot (c) shows |x,(f)—y,(#)| versus ¢
€[0,500]. As can be seen, after an initial transient, synchronization
is achieved. (d) shows the time evolution of ¢’ (¢) (in gray), which
converges to the true value of o=1 [the oth ordinate line is plotted
as a black thin solid line in (d)]. The true system obeys Eq. (12),
(a, B,mg,m;)=(15.6,25.58,-8/7,-5/7), and the model system
obeys Eq. (14), where the estimate ¢’ evolves according to Egs.
(16) and (18), h(x)=x;, ['=[y,0,0]", y=15, and {=1. The initial
conditions for the true and the model systems are randomly chosen
points on the Chua double scroll attractor, o’ is evolved from an
initial value that is far away from the true value of o, i.e., ¢’(0)
=2.5, and ¢,(0)=0.

identified is described by a set of delay differential equations,

X(1) = P(x,x,p), (19)

where x(£)=(x,(t),x,,()...,x,(1)7, x,=x(t=17), 7is a time
delay, p=[p;,p2,...,p¢] is a set of € unknown parameters.

We try to model the dynamics of the true system by
y()=®(y,y, ,p’'), where (7',p’) are estimates of the un-
known true coefficients (7,p). Our goal is to evolve (7/,p’)
in time to match the unknown true values of (7,p) and in so
doing, to achieve synchronization between the model and the
true systems. We perform a one way diffusive coupling from
the true system to the model, as follows,

y(@) = ®(y,y,.p') + 'Th(x) - h(y)], (20)

where h(x) and I' are the same as defined before, y. =y(r
-7'), p'=[p{.p5.....p¢). In what follows, we assume for
simplicity and without loss of generality that & is a scalar
function, i.e., m=1. We now introduce the potential W, de-
fined in Eq. (15) (similar considerations apply as in the pre-
vious cases) and we propose to minimize W by making
(7",p1.p5,....py) converge onto the true values
(7,p1>P2s--->Pe), through the following gradient descent re-
lations,

)
#()=- B2 =2fH() ~h(IDAE,  (21a)
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. oV
pi()=- Pior 2p[h(y) = h(x)]Dhs;,  (21b)
i=1,...,¢, B,p;>0. We are now interested in how the
n-vectors r=dy'/d7’, s;=dy'/dp; evolve in time. We note
that the following auxiliary equations describe the evolution

of [r(1), s;(1)], i=1,...,¢,

aq) sy 7l ’) a(I)( sy 7l ,)
I"(t):[ (y.y-.p _FDh}r_ Y.¥-p') .

T

2.,
(22a)
(9(1)( Y7l /) (?CI)( Y7l ’)
s',»(t)={—yy P —rDh]s,.+—yy, =
dy Ip;
(22b)

y=y(t—7"). Therefore our adaptive strategy is fully de-
scribed by the set of Egs. (20), (21a), (21b), (22a), and (22b).

The above strategy is tested for a case, in which the true
system is described by the Mackey-Glass equation, n=1,

x(t)=x(1), X=p(x,x,,p),
d(x,xa,b) = — bx(1) + ax,/(1 +x19), (23)

I' coincides with the scalar coupling y. We choose a=0.2,
b=0.1, 7=23, and h(x)=x. For these values of the param-
eters, the dynamics of the Mackey-Glass system is chaotic.

We attempt to estimate the unknown delay 7 and the un-
known parameter a (£=1). Both the true system and the
model systems are initialized from uniformly distributed ran-
dom initial conditions on the chaotic attractor. We take S
=1, p;=0.1, and y=1. The results of our numerical experi-
ment are shown in Figs. 4(a)-4(c). The experiment consists
of two parts. For t=10°, 7 is kept constant and equal to 23,
while 7’ is initialized from a value that is far away from the
true value of 7=23, i.e., 7(0)=15 and a’(0)=0.4. As can be
seen, after a transient, r=4 X 10*, both 7 and a’ converge to
the true values of 7=23 and a=0.2. For 10°<r=3X10°, 7
becomes a function of time, i.e., 7(f)=23+2 sin(w107>7),
while the adaptive strategy [Egs. (20), (21a), (21b), (22a),
and (22b)] is kept running. As can be seen, for 1> 103, 7/(1)
tracks quite well the time evolution of 7(¢) and approximate
synchronization between the model and the true system is
attained. An important observation is that both the unknown
parameters can be simultaneously extracted and from using
the same source of information. We have also run another
experiment, in which we were able to estimate the param-
eters a,b, and 7 (not shown).

Figures 5(a) and 5(b) are plots of the average synchroni-
zation errors, respectively in the case of the Chua system and
the Mackey-Glass system. (a) shows the average synchroni-
zation error (|x;—y,|) calculated from integration of Egs.
(12)—(14) versus o’ assumed constant, with the true value of
o having been set to 1. Fig. 5(b) shows (|x—y|) calculated
from integration of Egs. (19), (20), and (23) versus 7' as-
sumed constant, with the true value of 7 having been set to
23 (a'=a=0.2). The plotted synchronization errors are aver-
aged over a long time and the initial transient, which reflects
the choice of the initial conditions, is neglected. As can be
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FIG. 4. Experiment with the Mackey-Glass system. (a) shows
|x—y| versus ¢. (b) shows the time evolution of 7/(f) (in gray, thick
line), compared to the time evolution of 7(z) (in black, thin line).
The experiment consists of two parts. In the first part, after an initial
transient, the estimate 7' converges to the true value of 7=23; in the
second part, 7 tracks the time evolution of 7(r)=23
+2 sin(71077). (c) shows the time evolution of a’() (in gray) con-
verging to the true value of a=0.2 (in black, thin line). ¢(x,x,)
=—0.1x+0.2x,/(1+x170); h(x)=x, y=0.1, B=1. The true system and
the model system are initialized from uniformly distributed random
initial conditions on the Mackey-Glass chaotic attractor.

seen, in both cases the average synchronization error is char-
acterized by a sharp minimum at ¢’ =o=1 (7 =7=23), and it
rapidly increases with |0’ —a] (|7 —1]).

IV. CONCLUSIONS

Synchronization of chaos has been shown to be a conve-
nient tool to identify the dynamics of unknown systems. Dif-
ferent techniques have been proposed, see, e.g., [2-4]. Yet,
the problems of identification of delays and discontinuity
points that frequently characterize the dynamics of real sys-
tems have not received adequate attention. In this paper, we
have proposed a fully nonlinear approach, based on a simple
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FIG. 5. (a) shows the average synchronization error {|x;—y;)
calculated from integration of Eqs. (12)—(14) versus ¢’ assumed
constant, with the true value of o having been set to 1. (b) shows
{|x—y|) calculated from integration of Egs. (19), (20), and (23) ver-
sus 7' assumed constant, with the true value of 7having been set to
23 (a'=a=0.2). The plotted synchronization errors are averaged
over a long time and the initial transient is neglected. All the simu-
lation parameters are the same as in Figs. 3 and 4.
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gradient descent technique (MIT rule), to address both these
problems. This strategy is completely described by integrable
differential equations. We have also shown the usefulness of
our strategy in the case that the unknown parameters of the
true system to be estimated slowly drift in time. We success-
fully apply our methodology to solve problems as different
as the identification of delays and the identification of dis-
continuity points of unknown dynamical systems. This sug-

PHYSICAL REVIEW E 81, 066218 (2010)

gests that our approach can provide a simple and flexible
paradigm for the resolution of a variety of diverse identifi-
cation problems.
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