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Abstract— In this paper, we expound some of our recent
results concerning the characterization of the relationship
between the network topology and traffic dynamics taking
place over it [1], [2]. We use a model of network genera-
tion that allows the transition from random to scale free
networks. Specifically, we consider three different topolog-
ical types of network: random, scale-free with γ = 3, scale-
free with γ = 2. We firstly compare the performance of
these networks in terms of throughput and average delivery
time, under the hypothesis of constant transmission rates
and infinite queue lengths at the network vertices. In-
terestingly, scale-free networks that are characterized by
shorter characteristic-path-length (the lower the exponent,
the lower the path-length), show worst performances in
terms of communication. We present an explanation of
this in terms of changes in the load distribution, defined
as the number of shortest paths going through a given ver-
tex. Then the issue is addressed of how the traffic behavior
on the network is influenced by the variable factors of the
transmission rates and queue length restrictions at the net-
work vertices. We show that these factors can induce drastic
changes in the throughput and delivery time of the network and
are able to counter-balance some undesirable effects due to
the topology.

I. Introduction

Much research effort has been spent recently in under-
standing the relationship between network topological fea-
tures and communication performances. As a first approx-
imation, it would be natural to make the most general hy-
pothesis about the structure of the underlying network,
that is, to think of it as a random graph. Unfortunately,
real networks show statistical properties that are far from
being completely random. The most important difference
is that they have typically power law degree distributions
with exponents between 2 and 3 [3]. Thus, in what fol-
lows, we consider three different topologies, in the order:
random, scale-free with γ = 3, scale-free with γ = 2.
By making use of a packet transport model that has been

widely studied in the literature (see [4], [5], [6] for further
details), we compare the main indicators of the network
performance, specifically the delivery time and the num-
ber of delivered packets (or throughput), as the underlying
topology is varied.

II. Network generation model

In order to cause the transition from random to scale-free
network we use the static model recently introduced in [7].
Vertices are indexed by an integer i, for (i = 1...., N), and
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assigned a weight or fitness pi = i−α where α is a parameter
between 0 and 1. Two different vertices are selected with
probabilities equal to the normalized weights, pi/

∑
k pk

and pj/
∑

k pk respectively and an edge is added between
them unless one exists already. This process is repeated
until M edges are made in the system leading to the mean
degree 〈k〉 = 2M/N . This results in the expected degree at
vertex i scaling as ki ∼ (Ni )α [7]. We then have the degree
distribution, i.e. the probability of a vertex being of degree
k, given by P (k) ∼ k−γ with γ = 1 + 1

α . Thus, by varying
α, we can obtain the exponent γ in the range, 2 < γ < ∞.
Moreover the ER graph is generated by taking α = 0.
It is worth noting that the static model described here,

can be considered as an extension of the standard ERmodel
for generating random-scale free networks, i.e. networks
with prescribed degree distribution, but completely ran-
dom with respect to all the other features.

III. Load distribution in Networks

One of the main parameters of vertex centrality is be-
tweenness centrality defined as the number of shortest
paths between pairs of nodes crossing a given vertex [8].
Taking this index as a starting point, Goh et al. [7] [9], de-
fined the load at each vertex v, say l(v), as the number of
packets passing through it, under the assumption that ev-
ery node sends a packet to every other node in the network
and that packets move in parallel from origin to destina-
tion through the geodesic, i.e. the shortest path between
them. This implies that for each shortest path between
a given couple of vertices, there is a packet passing along
it; in the case that packets encounter a branching point at
which there is more than one shortest path toward the des-
tination, they would be divided by the number of branches
at the branching point.
As pointed out in [1], in comparison to random graphs,

scale free networks are characterized by:
• Lower average load (averaged over all the network ver-
tices).
• Higher load standard deviation.
Intuitively, the presence of hubs in scale free networks,

results in a shorter average distance between vertices. On
the other hand, the increase in the load standard deviation
indicates that this happens at the expense of the fairness
of the network resources exploitation, with a relatively few
vertices drawing most of the network traffic. As we will
show next, such a phenomenon results to be particularly
noxious to the communication dynamics taking place over
the network.
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Fig. 1. Number of delivered packets versus the generation rate, λ.
Three different networks, random, scale-free with γ = 3, scale-free
with γ = 2, have been compared, while keeping a fixed number of
vertices (500) and the edge degree (3 per node).

IV. Model of Network Data Traffic

We use the family of Erramilli interval maps as the gener-
ator for each LRD traffic source, (Erramilli et al., 1994),[10]
within the network, as further explained in [1].

We assume, the network involves two types of nodes:
hosts and routers. The first are nodes that can generate
and receive messages and the second can only store and
forward messages. The density of hosts ρ ∈ [0, 1] is the
ratio between the number of hosts and the total number
of nodes in the network (in this paper we take ρ = 0.16).
Hosts are randomly distributed throughout the network.

A routing algorithm is needed to model the dynamic as-
pects of the network. Packets are created at hosts and sent
through the lattice one step at a time until they reach their
destination host.

The routing algorithm operates as follows: (1) First a
host creates a packet following a distribution defined by
the chaotic map (LRD) described above. If a packet is
generated it is put at the end of the queue for that host.
This is repeated for each host in the lattice. (2) Packets
at the head of each queue are picked up and sent to a
neighboring node selected according to the following rules:
(a) A neighbor closest to the destination node is selected.
(b) If more than one neighbor is at the minimum distance
from the destination, the link through which the smallest
number of packets have been forwarded is selected. (c)
If more than one of these links shares the same minimum
number of packets forwarded, then a random selection is
made.

This process is repeated for each node in the lattice.
The whole procedure of packet generation and movement
represents one time step of the simulation.
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Fig. 2. Delivery times versus the generation rate, λ. Three different
networks, random, scale-free with γ = 3, scale-free with γ = 2, have
been compared, while keeping fixed the number of vertices (500) and
the edges (3 per node)

V. Effects on network performance of varying

the underlying topology

We have compared three different topologies: random,
scale-free with γ = 3, scale-free with γ = 2 in order to
evaluate the effects of the underlying topology on the net-
work performances.
The networks we consider have different degree distribu-

tions but are characterized by the same number of available
resources, that is by the same number of vertices and edges.
Where the resulting network is not fully connected, we have
only considered the giant component.
In Fig.1 the number of delivered packets, or throughput,

has been plotted as a function of the generation rate, λ,
for the three considered topologies. Scale-free networks
show the least effective performances in that the number of
delivered packets is lower than for random networks, with
Poisson degree distribution. For scale-free networks, those
with γ = 2 are still less effective than those with γ = 3.
Though our analysis is purely qualitative, we would like
to point out that the real Internet has a power-law degree
distribution with γ = 2.2 [11].
Notice that the differences among the different consid-

ered topologies, increase for higher values of λ. In partic-
ular random networks seem to behave better than other
networks under high traffic rates. It is worth noting that
this is in strong agreement with results shown in [12].
In Fig.2, the delivery time for packets to reach their des-

tination has been plotted versus the generation rate, λ.
The results are in accordance with those for throughput:
the highest delivery time have been achieved for random
networks, the lowest for scale-free networks with γ = 2.
The reason for this is that packets that are stored in

the routers’ queues without being delivered to their desti-
nation, increase the time needed for other packets to reach
their destination. Moreover scale-free networks show a van-
ishing value of the critical load λ, i.e. the value of λ at
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which a phase-transition occurs [4], with respect to ran-
dom graphs. Consequently, although scale-free networks
are characterized by a shorter characteristic-path-length
[13], they show worst performances in terms of commu-
nication.
It is somewhat surprising that the structure of scale-free

graphs, which are ubiquitous in nature, does not lead to any
benefit but rather a worsening in terms of the end-to-end
performance. In particular, the characteristic parameters
known as throughput and delivery time are considerably
affected by the congestion at the network hubs. This is
counter-intuitive when one considers that the shortening
of the distances in the network might result in a reduction
of the delivery time and thus an increase of the throughput.
This interesting phenomenon is analogous to the para-

dox of heterogeneity [14], which has been observed in the
context of synchronizability of scale-free networks.

VI. Topology-aware communication models

Sofar we have considered no differences in the commu-
nication behavior among nodes characterized by different
degree. Yet, it is unrealistic to assume that resources such
as bandwidth are uniformly distributed among the network
nodes in strongly heterogenous networks. Instead, it is very
likely that hubs, which are characterized by a high number
of incoming and outgoing links, are found to play a fun-
damental role in communication over the network. They
are typically characterized by having higher server strength
transmission rates and larger buffers than more peripheral
nodes.
For these reasons, in [?] we have introduced the follow-

ing topology-aware communication model: (i) the trans-
mission rate r is assumed to scale with the degree at each
vertex i, k(i), as: r(i) = c1k(i)α (note that in the partic-
ular case where α = 0, we recover the original case, with
all the nodes having the same transmission rates); (ii) the
maximum queue length (i.e., the buffer size) is no longer
assumed infinite but is taken to scale with the degree at
each vertex i, k(i), as: q(i) = c2k(i)β .
In what follows, we analyze separately, by means of nu-

merical simulations, the effects of varying α and β on the
network communication performance. As a representative
case, we assume c1 = 1 and c2 = 50. Similar behavior was
observed for other values of c1 and c2.
The routing algorithm is the same as the one described

above, with the difference that at each iteration of the al-
gorithm, a third step is considered. Namely, packets at the
head of each queue, exceeding its maximum capability, are
dropped.

VII. Network Performance

Using the network model and traffic generator detailed
above, simulations were carried out to analyse various as-
pects of end-to-end performance for two types of network.
Namely, results for random graphs have been paired with
those of scale-free graphs with γ = 3. We have calculated
the corresponding output for scale-free graphs with γ = 2
and have found that the differences in behaviour with the

alternative value γ = 3 are negligible by comparison with
the behaviour of the random graph, and so the third set of
comparisons is not repeated here.
In Fig. 3 we see that random graphs respond more

quickly with smaller delivery times as α increases (from
zero). Similarly, it is observed the communication is much
more efficient in terms of delivered packets at high loads (or
generation rate) as α increases. The number of delivered
packets, instead, is observed to be unaffected by the buffer
sizes at the nodes, being mainly determined by the network
topology. Finally, in Fig. 4, the number of dropped pack-
ets is observed to decrease as the buffer sizes are scaled
more sensitively with vertex degree. (More evidence can
be found in [1],[?] where further simulation results are re-
ported.)

VIII. Conclusions

We have shown how topological transitions in a given
network from random to scale free affect the load distribu-
tion on the network itself. In particular, we characterised
such load distribution in terms of the average load and
its standard deviation. We observed that as the topologi-
cal transition takes place, the network performance wors-
ens and the load tends to become more localised (higher
standard deviation). Moreover, by introducing a topology-
aware communication model, we showed how it is possi-
ble to counter-balance some undesirable effects due to the
topology.
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Fig. 3. Delivery time versus the generation rate, λ. The network is a (a) random graph (γ =∞), (b) scale-free graph (γ = 3) with number
of nodes N = 512 and number of edges M = 2N . We show the effects of varying the transmission rates r(i) at node i, according to the law
r(i) = k(i)α, for α ranging between 0 and 0.5 (blue to red). The black dotted line represents the free regime at α = 1.
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Fig. 4. Number of dropped packets versus the generation rate, λ. The considered network is scale-free with γ = 3 and γ =∞, the number
of nodes being N = 512 and number of edges M = 2N . We show the effects of varying the queue length q(i) at node i, according to the law
q(i) = 50k(i)β , for β ranging between 0 and 1.5.
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