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In this paper we study synchronized motions in complex networks in which there are distinct groups of
nodes where the dynamical systems on each node within a group are the same but are different for nodes in
different groups. Both continuous time and discrete time systems are considered. We initially focus on the case
where two groups are present and the network has bipartite topology �i.e., links exist between nodes in
different groups but not between nodes in the same group�. We also show that group synchronous motions are
compatible with more general network topologies, where there are also connections within the groups.
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I. INTRODUCTION

Because of its relevance in a wide variety of physical,
biological, social, and engineering contexts, synchronization
of complex networks of coupled dynamical systems has re-
cently received increasing attention. In this paper, we ana-
lyze synchronized �possibly chaotic� motions in complex
networks of coupled groups of dynamical systems. Here by a
group we mean a collection of systems that have the same
dynamics, with any given group consisting of systems with
dynamics that is different from the dynamics of systems in
the other groups. Specifically, we will show that under cer-
tain circumstances, multiple group-synchronous evolutions
may exist in such networks. In this type of synchronous mo-
tion, the evolution of the states of systems within a particular
group are the same, while the states of members of different
groups, although coherently related, are in general different
�indeed the state vectors of systems in different groups may
have different dimensionality�.

The problem of collective behavior in a network connect-
ing members of different groups is of broad interest. As a
first example, we note that many efforts have been devoted
to the study of teams �groups� of interacting robots perform-
ing synchronous coordinated tasks �1,2�. Other studies have
regarded the coordination and control of several squadrons
�groups� of unmanned autonomous vehicles to accomplish
interdependent tasks, such as cooperative searches and at-
tacks �3–5�. In the social networks literature, distinct collec-
tive behaviors of individuals are often related to their sex,
social status, and/or race. Some studies have clearly pointed
out how men’s and women’s social behaviors differ, even in
situations where they are found to interact tightly, as in vir-
tual communities or internet chats. In the brain functional
assemblies of neurons have been observed to display distinct
interdependent synchronous oscillations �6�. Collective dy-
namics of groups displaying multisynchronous behaviors
have also been uncovered in ecological systems �7–9�, where
competition could have favored the evolution of different
synchronous behaviors of different species. For example,
some corals are known to spawn synchronously during a
particular season of the year �10�. At the same time, different
coral species typically spawn in different months, possibly to

prevent hybridization of the species and/or as a mechanism
to relieve larvae from interspecific competition �11�. Distinct
roles of males and females �as in the case of social networks�
influence the sexual activity of animals, where reproductive
synchrony has been speculated to benefit survival of progeny
by decreasing the likelihood of the male deserting his
partner.

Phase synchronization between essentially different cha-
otic systems has been the subject of intensive study since the
appearance of the paper �12�. However, here we will be in-
terested in complete �full� synchronization. Moreover, mul-
tiple synchronized motions of identical oscillators have been
observed to coexist in complex networks characterized by
strong community structure �13–15�. Here we will show that
under certain conditions, multiple synchronous behaviors of
systems with group properties can occur �23�.

In this paper we focus on the case where there are two
groups. In Sec. II we consider bipartite network topology and
continuous time dynamics and present examples of both pe-
riodic and chaotic synchronous behavior. In Sec. III, discrete
time systems are discussed. In the case of bipartite network
topology studied in Secs. II and III, a compact master stabil-
ity function �16� description for evaluating the stability of
group synchronous motions is possible. When there are more
than two groups or when there are two groups but a nonbi-
partite network structure, the stability analysis is generally
more difficult. In Sec. IV, we remove the constraint of bipar-
tite network topology, and we show that the stability of the
multisynchronous evolutions is indeed possible under these
more general conditions and that it can be enhanced when
connections are allowed between systems belonging to the
same group.

II. CONTINUOUS TIME BIPARTITE SYSTEMS

In this section we focus on continuous time systems and
consider a bipartite network connecting two groups. We find
the conditions that allow a synchronization manifold and
study its stability by means of a master stability function
approach.

A. Formulation

The individual equation of an isolated �uncoupled� node is
denoted by ẋi=F�xi�, i=1, . . . ,Nx, for the nodes in the first
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group Sx and by ẏ j =G�yj�, j=1, . . . ,Ny for the nodes in the
second group Sy, where xi �yj� is an nx-dimensional
�ny-dimensional� state vector and F :Rnx→Rnx and G :Rny

→Rny. The dynamical equations of the network systems are
as follows:

ẋi = F�xi� + �
j=1

Ny

AijH�yj�, i = 1, . . . ,Nx,

ẏ j = G�yj� + �
i=1

Nx

BjiL�xi�, j = 1, . . . ,Ny , �1�

where A is an Nx�Ny coupling matrix, whose entries �Aij�
represent the intensity of the direct interaction from system j
in Sy to i in Sx. Analogously the entries �Bji� of the Ny

�Nx matrix B represent the interaction from system i in Sx
to j in Sy. The interaction function H �L� is a mapping from
Rny to Rnx �from Rnx to Rny�.

We now consider the possibility of the existence of mul-
tisynchronous solutions, where by this we mean that x1�t�
=x2�t�= ¯ =xNx

�t�=xs�t� and y1�t�=y2�t�= ¯ =yNy
�t�=ys�t�.

Substituting such an assumed solution in Eq. �1�, we see that
in order for a multisynchronous state to exist the sum � jAij
must be independent of i and the sum �iBji must be indepen-
dent of j. If we denote the first sum by a and the second sum
by b, then by the replacements aH→H and A /a→A
�bL→L and B /b→B� we see that, without loss of generality,
it suffices to set a=b=1,

�
j=1

Ny

Aij = 1 ∀ i � Sx, �2a�

�
i=1

Nx

Bji = 1 ∀ j � Sy . �2b�

Thus the equations of motion for the synchronized
dynamics are

xṡ = F�xs� + H�ys� ,

yṡ = G�ys� + L�xs� . �3�

B. Synchronization stability

In what follows we seek to characterize the stability of the
above defined synchronous state. Linearization of the system
�1� around the synchronous evolutions xs�t� and ys�t� yields

�xi
˙ = DF�xs��xi + �

j=1

Ny

AijDH�ys��yj, i = 1, . . . ,Nx,

�yj
˙ = DG�ys��yj + �

i=1

Nx

BjiDL�xs��xi, j = 1, . . . ,Ny . �4�

The Lyapunov exponents of the dynamics of a synchro-
nous state (xs�t� ,ys�t�) are those associated with the follow-
ing system:

�xs
˙ = DF�xs��xs + DH�ys��ys,

�ys
˙ = DG�ys��ys + DL�xs��xs, �5�

obtained by linearization of Eqs. �3�. Note that the synchro-
nous evolutions xs and ys might, e.g., be stationary, periodic,
or chaotic.

We now assume that the �Nx+Ny�-independent solutions
of Eq. �4� can be expressed in the form �xi=cxi

�x̄, i
=1, . . . ,Nx and �yj =cyj

�ȳ, j=1, . . . ,Ny, where �cxi
� and �cyj

�
are appropriate time-independent scalars. This assumed form
will encompass all possible linear solutions of Eqs. �4� if the
space of vectors given by the possible values of

cxi
,cyj

�i = 1, . . . ,Nx; j = 1, . . . ,Ny�

has dimension Nx+Ny. As we shall see, this is the case �cf.
Eq. �9� to follow�. With the assumption, �xi=cxi

�x̄, i
=1, . . . ,Nx and �yj =cyj

�ȳ, j=1, . . . ,Ny, Eqs. �4� become

cxi
�ẋ̄ = cxi

DF�xs��x̄ + ��
j=1

Ny

Aijcyj	DH�ys��ȳ, i = 1, . . . ,Nx,

�6a�

cyj
�ẏ̄ = cyj

DG�ys��ȳ + ��
i=1

Nx

Bjicxi	DL�xs��x̄, j = 1, . . . ,Ny .

�6b�

Thus, in order that Eq. �6a� �respectively, Eq. �6b��, is
satisfied for all i �respectively j�, we require that
cxi

−1� jAijcyj
=�, where � is independent of i and cyj

−1�iBjicxi

=�, where � is independent of j. After defining the vectors
cx= �cx1

,cx2
, . . . ,cxNx

�T and cy = �cy1
,cy2

, . . . ,cyNy
�T, these con-

ditions may be rewritten as Acy =�cx and Bcx=�cy; that is,

�0 A

B 0
	�cx

cy
	 = ��cx

�cy
	 . �7�

Using this in Eq. �5� we obtain

�ẋ̄ = DF�xs��x̄ + �DH�ys��ȳ ,

�ẏ̄ = DG�ys��ȳ + �DL�xs��x̄ . �8�

One particular solution of Eq. �7� is obtained when �=�
=�, i.e.,

Q�cx
0

cy
0 	 = ��cx

0

cy
0 	, Q = �0 A

B 0
	 , �9�

where � belongs to the set �= ��i�, i=1, . . . ,Nx+Ny of the
�possibly complex� eigenvalues of the matrix Q.

Rewriting Eq. �9� as

�0 A

B 0
	� cx

0

zcy
0 	 = � ��z�cx

0

��/z�zcy
0 	 �10�

shows that the solution of Eqs. �9� yields all the possible
solutions of Eq. �7� by setting �=�z, �=� /z, cx=cx

0, cy
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=zcy
0, where z is a free parameter. Also since A and B are

real, the spectrum of Q is symmetric about the Re��� axis.
Furthermore, we note that, if � is an eigenvalue of Q, then,
by letting z=−1, we see that −� is also an eigenvalue. Thus
the spectrum of Q is symmetric about both the Re��� axis as
well as the Im��� axis.

Moreover, the stability of the synchronous evolutions
does not depend on the particular z. In fact, if in Eqs. �8� we
let �=�z, �=� /z, �ỹ=z�ȳ, we see that �x̄ ,�ỹ satisfy Eqs. �8�
with �=�=�. Thus it suffices to consider Eqs. �9�, and we
rewrite Eqs. �8� as

�ẋ̄ = DF�xs��x̄ + �DH�ys��ȳ ,

�ẏ̄ = DG�ys��ȳ + �DL�xs��x̄ , �11�

where �=�1 ,�2 , . . . ,�N. We define a master stability func-
tion �16� for this problem, denoted M��i�, where M associ-
ates to �, the maximum Lyapunov exponent of the system
�11�. Note that the function M��� can be determined without
knowledge of the matrix Q. Thus the synchronization stabil-
ity problem is decomposed in two parts: �i� a part dependent
only on the couplings H and L and on the individual system
dynamics F and G, but not on the network topology �i.e., not
on the matrix Q�, and �ii� a part dependent solely on the
network topology �determination of the spectrum of Q�.

Another important consequence of the invariance of Eqs.
�8� under the transformation �→�z, �→� /z is that the syn-
chronous state stability for an eigenvalue � is the same as for
−� �z→−z�. Thus only those eigenvalues with, e.g., Re���
�0 need to be tested.

C. Spectrum of Q

The matrix Q has a pair of real eigenvalues 1 and −1. This
follows because the sums of the components for all rows of
A and B are one. The eigenvalue +1 corresponds to an eigen-
vector all of whose components have the same value; while
the eigenvector −1 corresponds to an eigenvector whose first
Nx components have the same value and whose remaining Ny
components all have the negative of this value. Hence the
eigenvalues +1 and −1 are associated with the directions
parallel to the synchronization manifold; thus they may re-
sult in positive Lyapunov exponents corresponding to chaotic
dynamics taking place in the synchronization manifold �x1

=x2= ¯ =xNx
,y1=y2= ¯ =yNy

�. In order to check the stabil-
ity of the synchronous evolutions, one should evaluate the
master stability function M��i� for the remaining Nx+Ny −2
eigenvalues of Q, representing the stability of the motions
transverse to the synchronization manifold. The synchro-
nized state is stable if, M��i��0 for all �i in the set ��
= ��− �−1, +1��.

From the fact that the sum of the elements in every row of
Q is one, with all zero elements on the main diagonal, the
Gershgorin circle theorem implies that the spectrum of Q lies
in the disk of unit radius in the complex plane, having its
center at �0,0�. Note also that the matrix Q has at least 
Nx

−Ny
 zero eigenvalues, so that zero eigenvalues must always
occur unless Nx=Ny. In particular, if Nx�Ny, a necessary

condition for the stability of the synchronized coupled sys-

tems is that the Lyapunov exponents resulting from �ẋ̄

=DF�xs��x̄ and �ẏ̄=DG�ys��ȳ are all negative. �Note that
these exponents depend on H and L because the synchronous
time evolutions xs�t� and ys�t� depend on H and L.� In order
to see that Q has at least 
Nx−Ny
 zero eigenvalues, assume
that Nx	Ny. Then the Nx rows of A �each of which has Ny
�Nx components� can span a space of at most dimension Ny.
Hence the Nx+Ny =N rows of Q can span a space of most
dimension 2Ny, and there are at least �Nx+Ny�−2Ny =Nx

−Ny independent homogeneous linear relationships between
the rows of Q, implying that there are at least Nx−Ny zero
eigenvalues.

Moreover, the spectrum of Q can be obtained through the
computation of the eigenvalues of the lower dimensional of
the two matrices, AB and BA. In fact, by noticing that Q2 is
a block diagonal matrix of the form

Q2 = �AB 0

0 BA
	 , �12�

we have that, if � is in the spectrum of Q, then �2 must be
one of the Nx eigenvalues of AB and/or one of the Ny eigen-
values of BA. Say Nmin=min�Nx ,Ny�, define the Nmin�Nmin

matrix,

D = �AB if Nx 
 Ny

BA if Ny � Nx,
�13�

and denote the spectrum of D by �̃= ��̃1 , . . . , �̃Nmin
�. Then,

since the eigenvalues of Q2 are the square of the eigenvalues
of Q, we have that the spectrum of Q is

� = �0,0, . . . ,0� � �±��̃1, ± ��̃2, . . . , ± ��̃Nmin
� , �14�

where �0,0 , . . . ,0� denotes 
Nx−Ny
 zeros. �Note that by Eqs.
�2� one of the eigenvalues of D is +1, corresponding to an
eigenvector �1,1 , . . . ,1�T.�

As an example, we consider the network in Fig. 1. For
this network Nx=2, Ny =3, and

A = �w 1 − w 0

0 1 − w w
	, B = 1 0

1
2

1
2

0 1
� . �15�

Note that the row sums of A and B are one as required by
Eqs. �2a� and �2b�. Since Nx=2�Ny =3, D=AB, so that

D =
1

2
�1 + w 1 − w

1 − w 1 + w
	 . �16�

x1 x2

y1 y2 y3

1

1w

w

0.5

1-w 0.5

1-w

y1 y2 y3

FIG. 1. A simple five-nodes network.
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The eigenvalues of this 2�2 matrix are 1 and w. Thus
since 
Nx−Ny 
 =1, Eq. �14� yields the real spectrum,

� = �− 1,− �w,0,�w,1� . �17�

We now consider the spectrum of Q for large networks of
two types: �i� Q is random, and �ii� Q is constrained to have
a real spectrum but is otherwise random. To construct the
matrix Q in these two cases we start with a matrix Q� of the
form

Q� = � 0 A�

B� 0
	 , �18�

and then take Q to be

Q = K−1Q�, �19�

where K is a diagonal matrix with Kii=� jQij� . Equation �19�
ensures that the row sums of Q are one as required by Eqs.
�2a� and �2b�. For case �i� we choose the elements of A� �B��
randomly to be one with probabilities pxy �pyx�, and zero
otherwise. Note that, in case �i� there is no correlation be-
tween Aij and Bji. For case �ii� we choose A� randomly with
Aij� =1 with probability p and Aij� =0 otherwise, and we then
set B�= �A��T. Thus, in this case, Q� is symmetric and the
first Nx elements Kii of K are the row sums of A�, while the
next Ny components are the column sums of A�. For case �ii�
the spectrum is real, since by multiplying by K1/2, the eigen-
value equation Qc=�c can be rewritten as �K−1/2Q�K−1/2�c�
=�c�, where c�=K1/2c. Because K−1/2Q�K−1/2 is symmetric,
if Q� is, we see that the eigenvalues of Q are real in case �ii�.
Next we use numerical experiments to investigate the gen-
eral properties of the spectrum of large random matrices Q in
the above two cases.

First we consider case �i�. We take Nx=Ny =500 and find
the spectrum of Q for randomly generated matrices with sev-
eral values of pxy and pyx. Results are shown in Fig. 2. We
see that there are two eigenvalues at �= ±1 and that all the
other eigenvalues lie within a circle whose radius decreases
as the average node degree increases �i.e., as pxy and pyx
increase�. We evaluated the scaling of �max=maxi 
�i
 for �i
��� with the network size N in the simple case where Nx
=Ny =N /2 and pxy = pyx� p. We hypothesize a scaling of the
form �max�N , pxy�=CN�, and perform numerical simulations
with p ranging between 0 and 1, and N ranging between 200
and 2000. Our numerics show that ��1 /2 �we note, how-
ever, that for pxy→1, �max=0, independent of N�. Thus, by
assuming a scaling of the form �max�N , p�=CN−1/2 we ob-
tained different values for C, as a function of the probability
p. In Fig. 3 the values of the logarithm of �max /C are shown
to collapse to a straight line of slope −1 /2 for different val-
ues of p, when plotted versus the logarithm of the network
dimension N. The inset of Fig. 3 shows C versus p for p
ranging between 0 and 0.9 in steps of 0.1. The scaling
�max�N−1/2 implies that, with increasing N, the spectrum ��
shrinks toward the point �0,0�. Moreover, �� also shrinks
toward �0,0� as pxy and pyx approach one, independently of
the network dimension N. Thus both in the case of a very

large network �i.e., N large� or complete network �i.e.,
pxy , pyx→1�, the whole spectrum of the eigenvalues in ��
collapses onto the real eigenvalue 0.

We now consider case �ii� where the spectrum of Q is
real. Analogous to the results in Figs. 2 and 3, we find that
for large N the eigenvalues of Q in �� are distributed along
the real line lying in a symmetric range, −�max
�
�max,
where �max decreases toward zero with increasing p �see Fig.
4�a�� as well as increasing N �see Fig. 4�b��, with �max
�N−1/2 for large N.

The result that �max decreases with N and p �or pxy and
pyx� for both cases �i� and �ii� is quite significant. In particu-

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re{λ
i
}

Im
{λ

i}

FIG. 2. �Color online� Random networks with Nx=Ny =5�102

nodes. The spectrum of Q is shown for three sets of values of pxy

and pyx. Yellow �light gray� is used for pxy = pyx=0.05; red �dark
gray� for pxy =0.5 and pyx=0.05; black for pxy = pyx=0.5. The con-
tinuous line is used to represent the circle of unit radius centered at
�0,0�. The eigenvalues �= ±1 associated with perturbations in the
synchronization manifold are denoted by solid black dots.

100 1000
1000

2000

3000

4000

5000

N

λ m
ax

/C

p=0.1
p=0.2
p=0.3
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0 0.3 0.6 0.9
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2
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FIG. 3. �Color online� Log-log plot of �max /C versus N, for
different values of pxy ranging between 0.1 and 0.9 in steps of 0.1.
The straight line has slope −1 /2. The inset shows C versus p.
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lar, if �max�1, then, for the purposes of evaluating the mas-
ter stability function, it becomes a good approximation to set
�=0. This is a great simplification in that the master stability
function now need be evaluated only for a single value of �,
and its determination reduces to a computation on two un-
coupled systems,

�ẋ̄ = DF�xs��x̄ ,

�ẏ̄ = DG�ys��ȳ , �20�

where we again emphasize that, although the coupling func-
tions H and L do not appear explicitly in Eq. �20�, M still
depends on H and L because the synchronous time evolu-
tions, xs�t� and ys�t�, depend on H and L �see Eq. �3��.

D. Examples

Example 1. Synchronized periodic motion. We consider
the following coupled network dynamical equations, which
are in the form �1�:

ẋi�1� = xi�2� − xi�1��xi�1�
2 + xi�2�

2 − 1� + x�
j=1

Ny

Aijyj�1�,

ẋi�2� = − xi�1� − xi�2��xi�1�
2 + xi�2�

2 − 1�, i = 1, . . . ,Nx.

�21�

ẏ j�1� = yj�2� + y�
i=1

Nx

Bjixi�1�,

ẏ j�2� = − yj�1� − 0.2yj�2��yj�1�
2 − 1�, j = 1, . . . ,Ny . �22�

In the absence of coupling x=y =0, Eqs. �21� and �22� both
individually have global attractors on which the motion is
periodic �i.e., they are limit cycle attractors�. In particular,
with y =0, Eq. �22� is the Van der Pol equation.

In order to measure the extent to which synchronization is
achieved, we have monitored the asymptotic time average of
the following two quantities: Ex= 1

Nx
2 �i=1

Nx � j=1
Nx �
xi�1�−xj�1� 


+ 
xi�2�−xj�2� 
 � and Ey = 1
Ny

2 �i=1
Ny � j=1

Ny �
yi�1�−yj�1� 
 + 
yi�2�−yj�2� 
 �,
as functions of the control parameter x with y =0.65. For
each i and j we consider randomly chosen initial conditions
in 
xi1,2 
 �3 and 
yj1,2 
 �3 and evolve the system for a long
time �from t=0 to t=300�.

The case of a network with a real spectrum, obtained as
explained in Sec. II C for the case �ii�, is shown in Fig. 5. For
this network we take Nx=200, Ny =300, and p=0.5, for
which we find �max=0.13. The upper panel of Fig. 5 shows
Ex+Ey as functions of x for y =0.65 at different simulation
times t=100,200,300. We see that for 0�x
0.4 the error
decreases with time to very low values, indicating stable syn-
chronization in this range of x �the synchronized motion in
this range is observed to be periodic�. The lower panel shows
the corresponding master stability function evaluated at �
=0 �continuous line�, and at �=�max=0.13 �dashed line�. We
observe that the x value for the zero crossing of M��� is
approximately at 0.4, for both �=0 and �=�max. For other
values of � in the range 0����max the curves are similar
and have x values at the zero crossings of the master stabil-
ity function at approximately 0.4. Thus we find that the mas-
ter stability function �lower panel of Fig. 5� predicts a stable
x range of 0
x
0.4 in excellent agreement with our re-
sults from the full nonlinear computation �upper panel of
Fig. 5�.

Example 2. Synchronized chaotic motion. We now con-
sider the following coupled network dynamical equations:

ẋi = − r�xi + h�xi�� + r�
j=1

Ny

Aijyj�1�, i = 1, . . . ,Nx, �23�
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0.2
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0.6

0.7
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2
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3

10
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10
3.2

10
3.3

10
3.4
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3.5

10
3.6

N

λ m
ax

/C

p
xy

=0.1

p
xy

=0.5

(a)

(b)

FIG. 4. �Color online� The behavior of �max as a function of p
and of N for large random networks with real spectra �Q=K−1Q�
and Q� symmetric�. �a� �max versus p, for Nx=Ny =5�102 and Ny

=5�102 nodes. �b� Log-log plot of �max /C versus N for p=0.1 and
p=0.5 showing that �as for case �i�� �max scales as N−1/2 for large N
�the solid line has slope −1 /2�.
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ẏ j�1� = − yj�1� + yj�2� + �
i=1

Nx

Bjixi,

�24�
ẏ j�2� = − qyj�1�, j = 1, . . . ,Ny ,

where h�x�=m1x+
m0−m1

2 �
x+1 
−
x−1 
 � and we take r=4.6,
q=6.02, m0=−8 /7, m1=−5 /7.

When xi=xs ∀ i, yj�1,2�=ys�1,2� ∀ j, the three equation
system formed by Eqs. �23� and �24� has three attractors; two
are stable fixed points at �x ,y�1� ,y�2��= �±3 /2,0 , �3 /2� and
the third is a chaotic attractor �17�. Thus, depending on the
initial conditions, the motion in the synchronization manifold
can be chaotic. We now investigate the stability of the syn-
chronous chaotic motions for large N. For N�1 all the ei-
genvalues in �� tend to 0, and the synchronous evolution
thus is stable if the maximum Lyapunov exponents associ-
ated with the following two �uncoupled� systems,

�ẋ = K�t��x, where K�t� = − r − �rm0 if 
xs
 � 1

rm1 if 
xs
 	 1,

�25�

and

�ẏ�1� = − �y�1� + �y�2�,

�ẏ�2� = − q�y�1�, �26�

are both negative. Note that the x-Lyapunov exponent for the
system in Eq. �25� is the time average of K�t�, which is equal
to −r�1+ p�m0+ p	m1�, where p� �p	� is the fraction of time
that 
xs�t� 
 �1 �
xs�t� 
 	1�, where p�+ p	�1. Hence we
have that the x-Lyapunov exponent is negative if p�� �1
+m1� / �m1−m0�=2 /3. From numerical solution for the syn-
chronized motion we find that this condition is indeed satis-
fied. On the other hand, the system �26� is equivalent to s̈=
−ṡ−qs, where s=�y�2�, which converges toward the origin
�0,0� with Lyapunov exponents, both equal to −1 /2. Thus
the synchronization of the network in Eqs. �23� and �24� is
ensured for sufficiently large networks.

We now investigate synchronization stability for the sys-
tems �23� and �24� for a case of a real spectrum for Q, but
without assuming large N. By linearizing the system in Eqs.
�23� and �24� about the synchronous evolution, we obtain for
Eqs. �11�,

d

dt �x

�y�1�

�y�2�
� = K�t� �r 0

� − 1 − 1

0 − 6.02 0
� �x

�y�1�

�y�2�
� . �27�

In Fig. 6, we evaluate the master stability function associated
with the system in Eq. �27� as a function of �. The figure
shows that, if all �i in �� lie in the range �0,0.7�, synchro-
nization will be stable. Moreover, since the master stability
function �in Fig. 6� becomes positive as � increases, the sta-
bility of the synchronous evolution depends only on �max;
i.e., if M��max� is negative, the synchronous evolution is
stable. Furthermore, we see that the large N limit is reason-
ably well satisfied for �max
0.2 �i.e., M��� at �=0 and at
�
0.2 are approximately the same�.

As a first example, we now consider a specific network
where N is small. In particular, we consider the network
shown in Fig. 1 for which we have shown that the spectrum
of Q is given by Eq. �17�. Thus �max=�w, and the spectrum
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FIG. 5. The upper panel shows Ex+Ey versus x for y =0.65.
The continuous thin line represents Ex+Ey at t=100; the dashed
line, Ex+Ey at t=200; the thick continuous line, Ex+Ey at t=300.
The network parameters are as follows: Nx=200, Ny =300, and p
=0.5. The lower panel shows the master stability function evaluated
at �=0 �continuous line�, and at �=�max=0.13 �dashed line� versus
x.

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

λ

M

FIG. 6. The master stability function associated with the system
�27� as a function of the real parameter �, varying between 0 and 1.
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of Q is real. Figure 7 shows the synchronization error at
large time as a function of �max for w varying between 0 and
1 in steps of 0.01. We see that, in accord with our stability
result from Fig. 6, stable synchronization of the chaotic mo-
tion is obtained if �max�0.7. In obtaining Fig. 7, we initial-
ize the variables xi ,y�1�i ,y�2�i randomly in xi	0 on the syn-
chronized chaotic attractor �5�. For these initial conditions,
we find that the time asymptotic synchronous motion is on
the chaotic attractor of the system �rather than on one of the
two fixed point attractors�.

As a second example, Fig. 8 shows numerical results for a
random network �case �i� of Sec. II C� with Nx=200,Ny
=300, p=0.05 corresponding to �max=0.58, using the same
type of initialization as in the previous example. Since
�max�0.7, Fig. 6 predicts stability, as is in fact seen in Fig.
8. In this figure the evolutions of all the randomly initialized

systems are plotted versus time. It is seen that good synchro-
nization is achieved by t�10.

III. NETWORKS OF DISCRETE TIME SYSTEMS

In this section we present a general analysis of two-group,
bipartite network synchronization for discrete time systems.
We assume the evolution of our discrete time network to be
described by the following set of equations:

xi
n+1 = F�xi

n� + �
j=1

Ny

AijH�yj
n�, i = 1, . . . ,Nx,

�28�

yj
n+1 = G�yj

n� + �
i=1

Nx

BjiL�xi
n�, j = 1, . . . ,Ny ,

where xi �yj� is an nx �ny� dimensional vector. Requiring Aij

and Bij to satisfy conditions �2a� and �2b�, we see that mul-
tisynchronous motion is possible and is described by the
equations

xs
n+1 = F�xs

n� + H�ys
n� ,

ys
n+1 = G�ys

n� + L�xs
n� . �29�

Linearization of Eq. �28� about the synchronization mani-
fold leads to

�xi
n+1 = DF�xs��xi

n + DH�ys��
j=1

Ny

Aij�yj
n, i = 1, . . . ,Nx,

�30�

�yj
n+1 = DG�ys��yj

n + DL�xs��
i=1

Nx

Bji�xi
n, j = 1, . . . ,Ny .

Similar to our previous analysis, we set �xi
n=cxi

�x̄n and �yj
n

=cyj
�ȳn, where cxi

and cyj
are appropriate scalar coefficients.

Substitution of these into Eqs. �30� yields

�x̄n+1 = DF�xs��x̄n + DH�ys��
j=1

Ny Aijcyj

cxi
�ȳn, i = 1, . . . ,Nx,

�31a�

�ȳn+1 = DG�ys��ȳn + DL�xs��
i=1

Nx Bjicxi

cyj
�x̄n, j = 1, . . . ,Ny .

�31b�

Then, following Sec. II, in order for Eq. �31a� �respec-
tively, Eq. �31b�� to be satisfied for all i �respectively, j� we
require that �cxi

�−1� jAijcyj
= �cyj

�−1�iBjicxi
=�, where � is in-

dependent of both i and j. After defining the vector c
= �cx1

,cx2
, . . . ,cxNx

,cy1
,cy2

, . . . ,cyNy
�, the above conditions

may be rewritten as Qc=�c �as in Eq. �9��.
This lets us formulate the following master stability func-

tion problem:

�x̄n+1 = DF�xs��x̄n + �DH�ys��ȳn,
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FIG. 7. The network shown in Fig. 1 is modified as a function of
w. The plot shows the sum of the values of the errors Ex+Ey as a
function of the corresponding �max.
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�ȳn+1 = DG�ys��ȳn + �DL�xs��x̄n. �32�

As in Sec. II, the master stability function M��� associates to
each �possibly complex� �i the maximum Lyapunov expo-
nent of the system in Eqs. �32�. The synchronous solution is
stable if M��i��0, for �i in ��.

IV. MORE GENERAL NETWORK TOPOLOGIES

In this section we consider the case of more general net-
work topologies. Specifically, we remove the constraint that
the network is bipartite and we allow connections within the
groups. We find that stable multisynchronous evolutions are
still possible and can be enhanced when intragroup connec-
tions are allowed.

As an example, we start by considering the following bi-
partite system:

ẋi�1� = − xi�2� − �
j=1

Ny

Aijyj ,

ẋi�2� = 0.2 + xi�2��xi�1� − 8.5�, i = 1, . . . ,Nx, �33�

ẏ j = 0.2yj + �
i=1

Nx

Bjixi�1�, j = 1, . . . ,Ny , �34�

where A and B satisfy Eqs. �2a� and �2b�. In the synchroni-
zation manifold Eqs. �33� and �34� yield the following cha-
otic Rössler system �18�:

ẋs�1� = − xs�2� − ys,

ẋs�2� = 0.2 + xs�2��xs�1� − 8.5� ,

ẏs = 0.2ys + xs�1�. �35�

Assume that the spectrum in �� includes zero as an eigen-
value. For such a case we see from Eq. �34� that the y com-
ponent of the master stability equation �11� yields �ẏ
=0.2�y, giving a Lyapunov exponent of 0.2	0. Thus the
synchronized state is unstable for any network whose spec-
trum contains zero or small eigenvalues.

We now ask how this situation is affected by the presence
of connections within a group. In order to illustrate this, we
consider a case in which the system �33�, �34� is modified by

adding connections within the group Sy, leading to the fol-
lowing network equations:

ẋi�1� = − xi�2� − �
j=1

Ny

Aijyj ,

ẋi�2� = 0.2 + xi�2��xi�1� − 8.5�, i = 1, . . . ,Nx, �36�

ẏ j = 0.2yj + �
i=1

Nx

Bjixi�1� − yy�
k=1

Ny

L jkyk, j = 1, . . . ,Ny ,

�37�

where L= �L jk� is a Laplacian matrix: �kL jk=0 for all j. It is
important to note that the diffusive coupling term, �kL jkyk, is
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FIG. 9. The synchronization errors Ex and Ey versus yy for Eqs.
�36� and �37� for a random network with Nx=200, Ny =300, pxy

= pyx=0.1, and pyy =0.15.
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FIG. 10. The top three plots show the time evolutions xi�t�, i
=1, . . . ,2, and yj�1,2��t�, j=1, . . . ,3, for the bipartite network repre-
sented in Fig. 1. The equations are those in Eqs. �23� and �24�: The
state of the systems at the final time t*=100 is shown by asterisks.
The bottom three plots show the state evolution of the network in
the case when a bidirectional diffusive link with an associated cou-
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seen that the presence of the added link causes the network to
synchronize.
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null in the synchronization manifold, where the dynamics is
governed by the Rössler equations �35�. In what follows we
consider a network with Nx=200, Ny =300. We generate A
and B randomly as described in Sec. II C, case �i�, with pxy
= pyx=0.10. We generate the Laplacian matrices randomly
taking L jk for j�k to be one with probability pyy and 0
otherwise. Figure 9 shows the effects of varying yy on the
two quantities Ex and Ey, defined in Sec. II. We see that the
network becomes synchronized for values of yy 	0.1, indi-
cating that diffusive intragroup coupling can be effective in
enhancing the network synchronization. Note that, as Fig. 9
shows, though the diffusive terms are added only to the y
systems, synchronization applies for both the systems in Sx
and Sy �in particular, what is observed is that both the sys-
tems synchronize in the chaotic Rössler evolution�. However,
we wish to emphasize that the master stability function ap-
proach presented in Sec. II is inadequate for assessing the
stability of the synchronous evolution when both intragroup
and extra-group connections are allowed in the network.

As another example, we consider the system given by
Eqs. �23� and �24�, introduced in Sec. II. The network topol-
ogy is represented in Fig. 1, where here we consider the
particular case of w=0.9. Thus, since �max=�w	0.7, ac-
cording to the master stability function shown in Fig. 6, the
network is not expected to synchronize. This is indeed what
is shown in the top three panels of Fig. 10, where the sys-
tems trajectories of the x nodes and y nodes are shown to
follow different evolutions. Now we consider whether it is
possible to synchronize the network of these systems by add-
ing diffusive couplings between systems in the same groups.
Namely, we add a single bidirectional diffusive link between
the two x nodes and we assume a coupling constant equal to
2. That is, we add a term 2�x2−x1� to the right-hand side of
Eq. �23� for x1 and a term 2�x1−x2� to the right-hand side of
Eq. �23� for x2. As shown in the bottom three panels of Fig.
10, the network is now observed to synchronize on a multi-
synchronous chaotic evolution. In particular, the equations
for this evolution are ẋs=−r�xs+h�xs��+rys�1�, ẏs�1�=−ys�1�
+ys�2�+xs, and ẏs�2�=−qys�1� �again, observe that the diffusive

coupling term is zero in the synchronization manifold�.

V. CONCLUSIONS

Motivated by the common occurrence in applications of
multisynchronous motions in ensembles of interacting sys-
tems characterized by different dynamical behaviors
�1–5,7–11,19–21�, we have addressed the issue of how these
systems can stabilize in distinct �possibly chaotic� synchro-
nous evolutions. This form of synchronization is distinct
from both diffusive coupling synchronization �16� and re-
placement synchronization �22�.

By considering the underlying network of connections
among the systems, we report conditions for the existence of
a synchronization manifold. In the case of bipartite network
topologies �i.e., when there are two communities and net-
work links only connect nodes in different communities� we
studied the stability of the synchronization manifold by
means of a master stability function approach. In so doing, it
was possible to decouple the effects of the network topology
from those of the dynamics at the network nodes. We also
presented an extension of our approach to discrete time sys-
tems.

Finally, we considered examples of the case of more gen-
eral network topologies, where links are also allowed to fall
within each community, and we reported numerical evidence
that the presence of diffusive couplings among nodes within
the same community can enhance the network synchroniz-
ability �24�.

We believe this paper represents only a first step in the
study of multiple synchronization of complex networks. We
hope that our work will stimulate further research efforts to
address this issue in the future.
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