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We consider a network of coupled agents playing the Prisoner’s Dilemma game, in which players

are allowed to pick a strategy in the interval [0, 1], with 0 corresponding to defection, 1 to

cooperation, and intermediate values representing mixed strategies in which each player may act as

a cooperator or a defector over a large number of interactions with a certain probability. Our model

is payoff-driven, i.e., we assume that the level of accumulated payoff at each node is a relevant

parameter in the selection of strategies. Also, we consider that each player chooses his=her strategy

in a context of limited information. We present a deterministic nonlinear model for the evolution of

strategies. We show that the final strategies depend on the network structure and on the choice of

the parameters of the game. We find that polarized strategies (pure cooperator=defector states)

typically emerge when (i) the network connections are sparse, (ii) the network degree distribution

is heterogeneous, (iii) the network is assortative, and surprisingly, (iv) the benefit of cooperation is

high. VC 2011 American Institute of Physics. [doi:10.1063/1.3613924]

We study a Prisoner’s Dilemma game on a network to

uncover the effect of the network structure on game dy-

namics. We describe a model for an individual’s changing

strategy based on a payoff comparison with the player’s

neighbors. This type of model is relevant to many situa-

tions where strategies change due to payoffs such as in

politics, economics, or finance.

I. INTRODUCTION

The Prisoner’s Dilemma is a paradigmatic model for

interactions among agents where strategies leading to either

individual gain (defection) or the common good (coopera-

tion) are in competition. For example, in politics, economics,

and in finance, an individual’s actions may be regarded as

cooperation or defection. Sometimes, the choice of a strategy

(whether to cooperate or defect) is affected by direct reci-

procity but other times, the choice of strategy is affected by

the performance of players in the game.

Previous research has focused on how direct reciprocity

in a repeated game (i.e., trust between connected individuals)

can affect the evolution of strategies.1–5 Alternatively, play-

ers’ performance may affect their goals and future choice of

strategies. For example, direct reciprocity cannot capture

altruistic or selfish behavior. Therefore, a problem of interest

is understanding, when the players are coupled in some com-

plex way over a network, how their strategies evolve in time,

based on their performance in the game. This is the subject

of the current paper.

Evolutionary game theory studies how players’ strat-

egies evolve when the game is iterated in time. Here, we

consider that the agents are coupled over a complex network

and that the game is played between each agent and his=her

direct neighbors over the network. An important difference

with previous literature is that our analysis is based neither

on a population level analysis42 nor on a mean field approxi-

mation; instead, we are interested in how a specific network

structure affects the evolution of strategies, and in particular

the fixed points of the dynamics and their stability. For a

review on evolutionary games on networks, see Ref. 6.

In recent years, much research effort has been devoted

to studying the structure and dynamics of complex networks

(see e.g., Refs. 6–18). However, a full understanding of how

the specific network structure affects the evolution of strat-

egies for models in evolutionary game theory is lacking.

Here, we present a unified analytical treatment which holds

for diverse networks including those with random, scale free,

and degree-correlated topologies.

In the literature on game theory, a distinction is com-

monly made between pure and mixed strategies. In the first

case, players are allowed to choose from a finite set of alter-

natives (e.g., in the case of two strategies, either defection or

cooperation). In the second case, each player is allowed to

choose a strategy in a continuum range, e.g., [0, 1], with 0

(1) representing pure defection (pure cooperation). In a prob-

abilistic framework, a mixed strategy equal to 0.25 corre-

sponds to cooperating 1=4 of the time and defecting 3=4 of

the time. In many real social situations, mixed strategies are

common, as rarely an individual is observed to behave as a

cooperator (defector) all of the time. It is also reasonable to

expect that mixed strategies will sometimes be convenient,

as they allow a player to hedge against the risk of choosing a

pure strategy (in the same way as diversifying a portfolio

reduces the risk of an investment). In what follows, we will

consider a network of coupled agents, each of which can

choose a strategy in a continuum of values between pure

defection and pure cooperation. Agents are then able to

update their individual strategy based on the interactions
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with the neighbors. Pure strategies are eventually recovered

as particular cases of mixed strategies (i.e., 0 or 1). Hence,

the pure strategies lie on the boundary of the mixed strat-

egies. As a result of this, we will see that pure strategies play

a particular role (qualitatively different) in the dynamics.

In what follows, we introduce a model for the evolution

of strategies that we analyze. The main features of our model

are the following: (I) it is payoff driven; and (II) each agent

has limited information on the other players’ strategies.

Below, we describe points (I) and (II) in more detail.

(I) Most of the ongoing research on evolutionary game

theory focuses on situations where the agents are

equal, i.e., they respond in the same way when pre-

sented with the same stimulus. However, this assump-

tion is unrealistic. In this paper, we model a situation

where each node’s choice of strategy depends on an

internal parameter that may differ from node to node.

We want this parameter to evolve with time based on

the interactions with the other players. We consider

that each individual’s choice of strategy depends on

his=her degree of success in playing the game; specif-

ically, we consider that the level of accumulated pay-

off at each node becomes a relevant parameter. As

motivation, we note how, in social contexts, the

behaviors of individuals are highly correlated with

their social status; also, in economics powerful
agents=players are usually more competitive than

weaker ones. Maslow’s theory of motivation19 ranks

human needs in a hierarchy (usually represented as a

pyramid) and argues that as each lower need is satis-

fied, the next higher level becomes more compelling,

i.e., there is a shift in the perception of the relevant

needs at each level of the hierarchy. In what follows,

we will incorporate this feature in our model of an

iterated game, i.e., once the accumulated payoff of

player i exceeds a threshold, this will have an effect

on the choice of strategy of i.
(II) Most of the current research in evolutionary game

theory considers that individuals choose their strategy

based on knowledge of other players’ strategies.

However, this assumption is unrealistic. In this paper,

we consider a situation in which knowledge about

other players’ strategies may be unavailable, while

we assume that each player has knowledge of his=her

neighbors’ payoffs. These assumptions apply to those

situations in which the strategies that players adopt

are hidden or undeclared. For example, we may

expect that in certain situations, a defector may be

reluctant to openly declare his=her strategy. Note that

if information on the payoffs is available, this can

provide indirect evidence of the strategies adopted by

the players; i.e., for example, if a neighbor is driving

a Ferrari, this might indicate that he or she must be a

strong cooperator or a strong defector; but which one

would be the right guess?43

To conclude, our model presents both these characteris-

tics: it is payoff-driven and it does not presume knowledge

of the other players’ strategies. As such, it aims at encom-

passing certain sources of complexity that characterize real-

world situations. Given our model, we are able to carry out a

stability analysis that is highly dependent on the specific net-

work structure and provides a unified framework to study the

effects of different network features, such as random, scale

free, and degree-correlated topologies.

In Sec. II, we present our model for the evolution of

strategies of coupled agents over a network. In Sec. III, we

classify the fixed points of the dynamics in fully mixed strat-

egies and polarized strategies and we present a stability anal-

ysis that gives a simple condition on the eigenvalues of a

relevant matrix. The role of the underlying network topology

on stability is considered in Sec. IV. Conclusions are pre-

sented in Sec. V.

II. MODEL FORMULATION

We consider a network of coupled agents (nodes) play-

ing the Prisoner’s Dilemma game. Each node i¼ 1,…,N is

characterized by a strategy ri in the closed interval [0, 1],

where the strategy ri represents the probability that player i
behaves as a cooperator over a large number of interactions

(1�ri is the probability that player i behaves as a defector).

The case of ri¼ 0 (ri¼ 1) corresponds to a pure strategy, in

which player i is always a defector (respectively, a coopera-

tor). We refer to all the remaining cases, i.e., ri 2 0; 1ð Þ, as

mixed strategies. We assume that the game is played very

frequently so that at our resolution, we are unable to assess

whether agent i behaves as a cooperator or a defector at any

given interaction, but only the average number of times that

it acts as a cooperator, i.e., the frequency ri, which we regard

as the state of node i. Hence, we assume to only have access

to the probability ri (while information about whether a

node behaves as a cooperator or defector at any given inter-

action remains unavailable). Over many interactions, indi-

viduals may occupy any position in the range of probabilistic

defector=cooperator behavior when considering their record

of behavior.

We consider that the evolution of the strategies is gov-

erned by the nodes’ payoffs, where the payoff of node i is

determined by its strategy and those strategies of the nodes

that are connected to it. In the Prisoner’s Dilemma (see e.g.,

Refs. 20 and 21), a cooperator incurs a cost c for each con-

nection that he or she has. If a cooperator is connected to

another cooperator, the benefit of that connection is b. So, if

a cooperator is connected to n individuals and m of them are

cooperators, the payoff for that cooperator is bm� cn. Typi-

cally, b> c. For a defector, there is no cost associated with

any connection, and if the defector is connected to l coopera-

tors, the defector’s payoff is bl.
We assume that the network structure could be directed

and weighted and is described by the adjacency matrix

A¼fAijg, where Aij> 0 if j is connected to i, 0 otherwise.

This yields the following definition of the payoff for a player i,

pi ¼ ri b
X

j

Aijrj � c
X

j

Aij

" #
þ ð1� riÞb

X
j

Aijrj

¼ b
X

j

Aijrj � c
X

j

Aijri ¼
X

j

Aijðbrj � criÞ; (1)
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or in matrix notation,

�p ¼ ðbA� cDÞ�r; (2)

where �p ¼ ½p1; p2;…; pN� is the vector of payoffs,

�r ¼ ½r1; r2;…; rN� is the vector of strategies, and D¼fdijg
is a diagonal matrix, such that dii ¼

P
j Aij. Again, pi in

Eq. (1) is the average payoff of node i over a large number

of interactions with its neighbors, when its strategy and those

of the neighbors are given by fixed r’s.

We allow the strategies adopted by each node=player to

evolve in time; thus, we write ri¼ri(t), where t represents

continuous time. Our basic assumption is that each node

updates its strategy based on its payoff and the payoffs of its

neighbors (note, we do not make the assumption that nodes

know the strategies of their neighbors. Indeed, that knowl-

edge could be unavailable). With this information, player i
can compute the relative payoff

ui ¼
X

j

Aij½piðtÞ � pjðtÞ�; (3)

with a positive (negative) value of ui indicating that node i is

performing better (poorly) with respect to its neighbors.

From Eqs. (2) and (3), we obtain

�u ¼ ðD� AÞ�p ¼ B�r; (4)

where �u ¼ ½u1; u2; :::; uN�, and the matrix B is defined as

B ¼ ðD� AÞðbA� cDÞ: (5)

From Eq. (4), we now see that the relative payoff of node i
can be written as a linear combination of the strategies, i.e.,

ui ¼
P

j Bijrj, i¼ 1,…,N. Note that the matrix B encodes in-

formation of both the network structure (i.e., the matrix A)

and the choice of the parameters of the game (i.e., the two

scalars b and c). We will show that the eigenvalues of this

matrix control stability of a fixed set of strategies.

We aim at formulating a simple, general model for the

evolution of the strategies fri(t)g, evolving from

ri 0ð Þ 2 0; 1ð Þ, that fulfils the following requirements:

(i) The pure strategies ri¼f0, 1g are fixed points for

the dynamics, as ri(t) cannot decrease below 0 or

exceed 1.

(ii) The dynamics admits other fixed points for values of

ri 2 0; 1ð Þ, corresponding to mixed strategies in the

spectrum of possibilities between complete coopera-

tion and complete defection.

(iii) The stability of the fixed points [(i) and (ii)] depends

on an internal adaptive parameter at each node

(which we label li, i¼ 1,…,N) whose evolution is

governed by the interactions with the neighboring

nodes. Under specific conditions, li is a measure of

the wealth of i, i.e., the accumulated payoff at node i.
We assume that when li exceeds a threshold, this

will affect the choice of strategy of i.

With these conditions in mind, we write the following

set of differential equations:

_riðtÞ ¼ ariðtÞðriðtÞ � 1ÞðriðtÞ � liðtÞÞ; (6a)

_liðtÞ ¼ f ðuiðtÞÞ; (6b)

i¼ 1,…,N. Equation (6a) determines the evolution of the

strategies, where a> 0, li is the adaptive parameter, whose

evolution is specified by Eq. (6b). Here, li is the ith node’s

internal parameter that models the player’s changing attitude

toward his neighbors. The evolution of li(t) is forced by the

input uiðtÞ ¼
P

j BijrjðtÞ, through the coupling function f that

we require to be continuous and strictly monotonically

increasing=decreasing with f(0)¼ 0. For f(u)¼ u, li is simply

the integral of ui(t), the relative payoff of node i, over time,

and as such, it represents the relative wealth of node i (see

(iii) above). Here, again, the word relative means with

respect to node i’s neighbors. We wish to emphasize that

from Eq. (6), our model is payoff-driven (it evolves based on

a comparison of the payoff between node i and its neighbors)

and does not presume knowledge at node i of its neighbors’

strategies rj, j= i.
The parameter li determines the stability of the fixed

points of Eq. (6a). The differential equation (6a) has three

fixed points, ri¼f0, 1, lig. The form of Eq. (6a) is such that

for any initial condition ri 0ð Þ 2 0; 1ð Þ, the trajectories are

constrained to lie in the closed interval [0, 1]. We now evalu-

ate stability of the fixed points of Eq. (6a), when the values

of li are fixed. This is summarized in Fig. 1. For li 2 0; 1ð Þ,
the pure strategies ri¼f0,1g are unstable, while the mixed

strategy ri¼li is stable. For li� 1 (li� 0), the fixed point 1

is stable and the fixed point 0 is unstable (the fixed point 1 is

unstable and the fixed point 0 is stable).

When li increases (decreases) above 1 (below 0), it

affects the stability of the fixed points of Eq. (6a) as shown

in Fig. 1. Specifically, for f(u)¼ u, when li exceeds or goes

below a threshold, this results in a qualitative change of the

behavior of i. This corresponds to a transition from one level

to another of the Maslow’s pyramid of needs, resulting in a

change of the individual’s attitude (and, as a consequence, of

his/her strategy).

In our numerical simulations to follow, we choose the

following form for the function f:

f ðuÞ ¼ b tanhðcuÞ; (7)

b, c> 0. With this choice, li can still be seen as the wealth

accumulated at node i but with a saturation on the maximum

increment or decrement that is allowed. There are many pos-

sible situations in which gains and losses are typically

bounded. As an example, consider a taxation system that

charges a tax on capital gains, while capital losses are tax-

deductible.

The form of the function f in Eq. (7) is consistent with

the observation that favorable (unfavorable) conditions often

foster cooperative (defective) behavior22–24 (e.g., empirical

studies have found a positive correlation between the level of

cooperation and the payoff for players participating in a Pris-

oner’s Dilemma experiment22). However, we wish to empha-

size that the results that we present in this paper (and in the

particular, the stability analysis of Sec. III) are, to a great

extent, independent of the specific choice of the function f.
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On another note, we observe that the function f describes

how the relative payoff influences the strategy adoption;

hence it defines an imitation function as defined in Ref. 25.

III. STABILITY ANALYSIS

In this section, we consider the stability of the fixed

points of Eq. (6), when the parameters li are not fixed (i.e.,

the individual systems i¼ 1,…,N are coupled). We first look

for fixed points r�i
� �N

i¼1
of the dynamics for Eq. (6). A candi-

date fixed point rif gN
i¼1 may include both pure and mixed

strategies for different nodes, i.e., for some i’s, ri¼f0, 1g
and for the remaining i’s, ri ¼ li 2 0; 1ð Þ. We refer to a

fixed point for which r�i 2 0; 1ð Þ, for all i¼ 1,…,N as a fully
mixed strategy, otherwise, we refer to it as a polarized
strategy.

In what follows, without loss of generality, we assume

that for any equilibrium point, the indices i are labeled so

that r�i ¼ 0; 1f g, i¼ 1,…,‘, 0� ‘�N, and r�i 2 0; 1ð Þ,
i¼ ‘þ 1,…,N. With this relabeling, we note that the Eq.

(6a), i¼ 1,…,‘, are decoupled from the corresponding equa-

tions (6b), i¼ 1,…,‘. It follows that the first ‘ equations (6)

drive the last (N� ‘) equations (6). Thus, we define any set

of strategies to be a fixed point r�i
� �N

i¼1
if the following con-

ditions are met: (I) Eq. (6a) are set to zero for i¼ 1,…,‘ and

(II) Eqs. (6a) and (6b) are simultaneously set to zero for

i¼ ‘þ 1,…,N l�i ¼ r�i ; i ¼ ‘þ 1;…;N
� �

.

Given a vector of strategies, frigN
i¼1, we would like to

derive conditions on this vector that identify it as a fixed

point. Conditions (I) are always satisfied if ri 2 0; 1f g
for all i¼ 1,…,‘. Conditions (II) become

PN
j¼‘þ1

Bijrj ¼ �
P‘

j¼1 Bijrj, i¼ ‘þ 1,…,N, or in matrix form,

Br �rr ¼ �c; (8)

which is a system of (N� ‘) linear equations in (N� ‘)
unknowns; the matrix Br is a reduced matrix, which is

obtained by eliminating the first ‘ rows and the first ‘ col-

umns from the matrix B, �rr is an (N� ‘)-vector which is

obtained by eliminating the first ‘ entries from the vector �r,

and �c ¼ ½c1; c2;…; cN�‘� is an (N� ‘)-vector, which is deter-

mined by the first ‘ entries of �r, i.e., ci ¼ �
P‘

j¼1 Bijrj. If

�c ¼ �0, the system of linear equations (8) is homogeneous

(case (A)), so any �rr in the null subspace Ker(Br) of the ma-

trix Br is a solution. Otherwise, Eq. (8) is an inhomogeneous

system (case (B)) and it admits one and only one solution,

provided that Br is invertible, i.e., �rr ¼ ðBrÞ�1�c. Fully mixed

strategies (for which ‘¼ 0, Br : B) are included in case

(A)].44

We consider ri 0ð Þ 2 0; 1ð Þ, which constrains ri(t) to be

in the interval [0, 1]. A vector in Ker(Br) does not neces-

sarily have to represent a set of physical strategies. For

example, for a given matrix Br, it is possible that there are

vectors in Ker(Br) that have both positive and negative

entries. Then, even with the multiplicative constant that we

are allowed for eigenvectors, it might be impossible to

rescale all entries of such vectors into the range [0, 1]. Thus,

in order for �rr to be a physically meaningful equilibrium for

the set of equations (6a), i¼ ‘þ 1,…,N, it has to satisfy the

additional requirement (III) that for case (A), all the entries

of �rr have the same sign (i.e., they are all positive or all neg-

ative) and, for case (B), the entries of the vector �rr are in the

interval (0, 1). For the remainder of the paper, we assume the

dimension of Ker(Br) to be 1; in which case, the single zero

eigenvector �v0 of Br is the basis for Ker(Br). Then any vector

�rr ¼ a�v0, where a 2 R is a fixed point but not necessarily

physical.

We see that the system of equations (6) behaves as a

multistable system for which the final attractor depends on

the choice of the initial conditions. Here, we include a stabil-

ity analysis for the fixed points of Eq. (6), i.e., for points

r�i
� �N

i¼1
that satisfy the above conditions (I), (II), and (III).

We already know that the first ‘ equations (6a) are decoupled

from the others and admit only one stable equilibrium (if 0 is

stable, 1 is unstable and viceversa). Therefore, in order to

study stability of an equilibrium r�i
� �N

i¼1
, we need to linea-

rize Eq. (6b), for i¼ ‘þ 1,…,N, about r�i
� �N

i¼1
(with

r�i ¼ l�i 2 0; 1ð Þ, i¼ ‘þ 1,…,N),

FIG. 1. The table (on the left) shows the stability (S) or instability (U) of each of the fixed points f0, 1, lig for any occurrence of li. Note that the stability of

the fixed points ri¼li for li> 1 and for li< 0 is in brackets as these equilibria are never observed if ri 0ð Þ 2 0; 1ð Þ. On the right, we have a graphical represen-

tation of the stability of the fixed points of Eq. (6a) for different values of li, where open circles represent unstable fixed points and filled circles represent sta-

ble ones. From top to bottom, we show the cases of li< 0, 0<li< 1, and l> 1.
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d _ri ¼ aðr�2i � r�i Þðdri � dliÞ; (9a)

d _li ¼ Df ð0Þ
XN

j¼‘þ1

Bijdrj; (9b)

i¼ ‘þ 1,…,N, where, since 0 < r�i < 1, we have that

�0:25 < r�2i � r�i
� �

< 0. We now write
PN

j¼‘þ1 Bijdrj

¼ kkdri, i¼ ‘þ 1,…,N, where kk is an eigenvalue and

[dr‘þ1,…,drN] is an associated eigenvector for the matrix

Br, k¼ 1,…,(N� ‘). By substituting in Eq. (9b), we obtain

d _ri ¼ aðr�2i � r�i Þðdri � dliÞ; (10a)

d _li ¼ Df ð0Þkkdri; (10b)

i¼ ‘þ 1,…,N and k¼ 1,…,(N� ‘). Note that Eq. (10) repre-

sent a set of (N� ‘)2 equations, each of which is independent

of the others. Equations (10) can be rewritten as

d _ri

d _li

� �
¼ a/i �a/i

Df ð0Þkk 0

� �
dri

dli

� �
; (11)

i¼ ‘þ 1,…,N, k¼ 1,…,(N� ‘), where /i ¼ r�2i � r�i
� �

< 0

and kk ¼ kr
k þ jki

j, where j2¼�1.

We first proceed under the assumption that the kk’s are

real (which is the case, e.g., when the matrix A is symmetric,

i.e., the network is undirected, see Appendix B). We see

from Eq. (11), that stability is independent of /i, as long as

/i is negative, but depends on the conditions

Df ð0Þkk � 0; k ¼ 1;…; ðN � ‘Þ: (12)

The case of kk¼ 0 corresponds to d~r decaying to zero, with

d~l constant. Hence, this kk¼ 0 eigenvalue corresponds to

neutral stability along the direction of the eigenvector �v0.

For Df(0)> 0 (Df(0)< 0), condition (12) is equivalent to

kmax� 0 (kmin� 0), where kmax¼maxk¼1,…,(N�‘)kk

(kmin¼mink¼1,…,(N�‘)). Note that this is a necessary and suffi-

cient condition for stability.

In the case, the eigenvalues kk of the matrix Br are com-

plex, stability requires that the real parts of both the eigen-

values of the system (11) be negative for i¼ ‘þ 1,…,N
and k¼ 1,…,(N� ‘). This corresponds to the following

conditions:

Df ð0Þkr
k � 0; (13a)

jDf ð0Þki
kj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a/iDf ð0Þkr

k

q
; (13b)

which need to be satisfied for i¼ ‘þ 1,…,N and for

k¼ 1,…,(N� ‘). In what follows, we proceed under the

assumption that the eigenvalues kk are real.

One nice property of the stability condition (12) is that it

decouples the effect of the coupling function f from the

effects of the eigenvalues kk of the matrix Br (of the matrix B
in the case ‘¼ 0), where the eigenvalues kk reflect the partic-

ular choice of the network structure (i.e., the matrix A) and

the form of the game (i.e., the parameters b and c). Also,

condition (12) allows us to predict whether some net-

work=game combinations would support fully mixed strat-

egies or promote polarized behaviors. For example, given

the network in Fig. 2(d), we are able to determine that for

b¼ 1.1, there is a stable fully mixed strategy and for b¼ 1.5

it is unstable.

Figures 2 and 3 show the effect of the choice of the pa-

rameters of the game on the stability of the strategies. Figs. 2

and 3 show a simulations for b¼ 1.1 (b¼ 1.5), where b is the

benefit of being connected to a cooperator (c¼ 1 in both

cases). For b¼ 1.1, the eigenvalues of the matrix B are

f�38.7, �20.2, �12.4, �9.15, �2.42, �1.00, �0.0841, 0g,
i.e., they are all negative. The eigenvector associated

with the eigenvalue 0 is �v0 ¼[0.405,0.260,0.194,0.194,

0.409,0.423,0.423,0.409], i.e., its components are all of the

same sign. Thus, we expect a fully mixed strategy propor-

tional to �v0 to be a stable fixed point for the dynamics. The

initial conditions ri(0) and li(0) are randomly selected from

a uniform distribution in the interval (0, 1). Figs. 2(a) and

2(b) shows the evolution of the individual ri(t) (of the li(t))
versus t, with the ri (and the li) converging on a solution

proportional to �v0. Fig. 2(c) shows the time evolutions of the

payoffs pi(t), i¼ 1,…,N, which after a transient converge on

the same value pi¼ 0.165, i¼ 1,…,N.

For b¼ 1.5, the eigenvalues of the matrix B are

f�42.9, �22.9, �13.5, �9.74, �2.06, �1.00, 0, 0.148g,
and �v0 ¼ ½0:203; 0:562; 0:556; 0:556; 0:0706; 0:0824; 0:0824;
0:0706�. Since one of the eigenvalues is positive, we do not

expect to see a solution proportional to �v0. The case of

b¼ 1.5 is shown in Fig. 3. As can be seen from Fig. 3(a),

after a transient, nodes 3 and 4 (shown as squares in the

graph in Fig. 3(d)) converge on the defector state 0; nodes 6

FIG. 2. We consider an 8-node network, shown in plot (d). The benefit of

cooperation is set to b¼ 1.1 (c¼ 1). Plot (a) shows the time evolution of

ri(t), i¼ 1,…, 8, with all the strategies ri(t) converging on a fully mixed

state, corresponding to �v0. Plot (b) shows the evolution of li(t), i¼ 1,…, 8.

Plot (c) shows the evolution of pi(t), i¼ 1,…, 8, with all the payoffs converg-

ing after a transient to 0.165. The initial conditions for l’s and r’s are ran-

domly chosen from a uniform distribution in the interval (0, 1),

a¼ 5 times; 10�2, b¼ 10�3, c¼ 1.
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and 7 converge on the cooperator state 1 (shown as circles).

The remaining four nodes converge on a mixed strategy

(shown as triangles). The eigenvalues associated with the

reduced matrix Br obtained by eliminating the third, fourth,

sixth, and seventh rows=columns from the matrix B are

f�40.1, �10.0, �5.50, �4.40g, which ensures stability of

the solution �rr ¼ Br�1�c ¼ ½0:983; 0:274; 0:880; 0:880�. Figs.

3(b) and 3(c) show the evolution of the individual li(t) (of

the payoffs pi(t)). In contrast to the case of b¼ 1.1, the

nodes’ payoffs converge on different final values: p1¼ 1.13,

p2¼ 0.652, p3¼ 0.411, p4¼ 0.411, p5¼ 1.21, p6¼ 1.29,

p7¼ 1.29, and p8¼ 1.21. The different final payoffs of the

players for b¼ 1.5 are to be ascribed to their different loca-
tions45 in the network. Note that we have repeated both the

simulations in Figs. 2 and 3 many times, starting from dif-

ferent sets of initial conditions, and always observed con-

vergence on a solution proportional to �v0.

It is evident that fully mixed strategies (the fixed point

observed in Fig. 2) and polarized strategies (the fixed point

observed in Fig. 3) are substantially different. In particular,

there are two main qualitative differences between the two:

1. Fully mixed strategies are fixed points for which the pay-

offs are equal at all the network nodes, while polarized

strategies are fixed points for which the payoffs are

uneven.

2. Fully mixed strategies are sensitive to the form of the net-

work and the parameters of the game. Therefore, it is pos-

sible to adjust=control a fully mixed strategy by changing

the network connections and=or the parameters of the

game. However, for polarized strategies, there are some

players whose strategies cannot be changed, and thus the

full state cannot be adjusted.

Fully mixed strategy represent a fair situation, in which

all the nodes achieve equal payoffs, regardless of their loca-

tion in the network. On the other hand, polarized strategies

represent an unfair situation, in which the nodes’ payoffs

vary according to their respective locations in the network.

Therefore, it becomes important to understand how parame-

ters of the game and variability of the networks yield stabil-

ity of the fully mixed strategy.

The effects of varying the parameter b (benefit of mutual

cooperation) on stability of the fully mixed strategy are

reported in Fig. 4. Figure 4(a) shows the result of evolving

the network in Fig. 2(d) for a long time from random initial

conditions in the range (0,1) as a function of the game pa-

rameter b for c¼ 1. At the end of each run, we record the

vector of the final strategies �rf and we plot the angle A
between the final state �rf and the state associated with the

eigenvector �v0,

A ¼ p�1 arccos
�rf � �v0

�rf

		 		 �v0k k

 !
; (14)

where we have indicated with the symbol, �, the dot product

between vectors and with �k k the Euclidean norm of vectors.

A is close to zero for b . 1.15 and grows for larger b. This is

predicted by our stability criteria (see Fig. 4(b)). In Appendix

C, we show that in the limit in which b¼ c, the fully mixed

strategy is stable. We expect this property to hold for b close
to c. However, for b above a critical value, the fully mixed

FIG. 4. Plot (a) shows the result of evolving the network in Fig. 2(d) for a

long time from random initial conditions in the range (0, 1). We plot A, the

angle between the final state �rf and the state associated with the eigenvector
�v0 as a function of the game parameter b for c¼ 1. The label R represents

the range of stability. Plot (b) shows the largest nonzero eigenvalue of the

matrix B versus b. The dashed section of the curve represents the range over

which the entries of the eigenvector �v0 are not all of the same sign.

FIG. 3. We repeat the simulation in Fig. 2, but now the benefit of coopera-

tion b¼ 1.5. With this choice of the parameters, the fully mixed state is

unstable. Plot (a) shows the time evolution of ri(t), i¼ 1,…, 8. Nodes 3 and

4 (shown as squares in the graph) converge on the defector state (0); nodes 6

and 7 (shown as circles in the graph) converge on the cooperator state (1);

the remaining four nodes (shown as triangles) converge on a mixed strategy.

Plot (b) shows the evolution of li(t), i¼ 1,…, 8. Plot (c) shows the evolution

of the payoffs pi(t), i¼ 1,…, 8, which converge on different final values:

p1¼ 1.13, p2¼ 0.652, p3¼ 0.411, p4¼ 0.411, p5¼ 1.21, p6¼ 1.29,

p7¼ 1.29, and p8¼ 1.21. The initial conditions for l’s and r’s are randomly

chosen from a uniform distribution in the interval (0, 1), a¼ 5 times; 10�2,

b¼ 10�3, c¼ 1.
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state becomes unstable. This is shown in Fig. 4(d) where the

largest nonzero eigenvalue of the matrix B is plotted versus

b. The dashed section of the curve (starting at b ’ 1:15) rep-

resents the range over which the entries of the eigenvector �v0

are not all of the same sign. Thus, we define the range of sta-
bility of a fully mixed strategy, R, as the range in the game

parameter b (for b> c) such that the largest nonzero eigen-

value of B is negative and the entries of the eigenvector �v0

are of the same sign.

An interesting result of Figs. 2–4 is that by increasing

the benefit to cost ratio b=c, the fully mixed state may be

destabilized. For example, in Fig. 3 (b¼ 1.5 larger than

b¼ 1.1, shown in Fig. 2), the fully mixed strategy is replaced

by a stable polarized strategy, for which some of the nodes

converge on the pure cooperator state and some on the pure

defector state. Our interpretation of this phenomenon is the

following. Fully mixed strategies are equilibria that arise in

the presence of a balance between the benefit of being con-

nected to a cooperator b and the cost of cooperating c. The

benefit to cost ratio b=c affects stability of these equilibria,

i.e., for a low ratio (b=c), they are stable and for a large ratio,

they are unstable.

IV. EFFECTS OF THE NETWORK TOPOLOGY ON
STABILITY

Fully mixed strategies are interesting equilibria, for

which all the players’ payoffs are equal. Moreover, different

from polarized strategies, fully mixed strategy states can be

controlled by changing the network connections and=or of

the parameters of the game. Thus, it is possible that accord-

ing to the specific application of interest, these may be desir-

able=undesirable configurations. In this section, we analyze

how the underlying network structure can affect stability of

fully mixed strategies. In particular, we analyze how the

range of stability R, defined as the width of the b-range (see

Fig. 4(a)) associated with stability of the fully mixed state,

varies for different network topologies. We consider the case

of symmetric network topologies, i.e., Aij¼Aji, i, j¼ 1,…,N,

for which the eigenvalues fkkg of the matrix B are real (see

Appendix B).

We first analyze Erdo†s-Renyi random graphs.26 These

are networks for which any two nodes are connected by an

edge with a constant probability p. Figure 5(a) shows the

range of stability R for Erdo†s-Renyi random graphs of 200

nodes versus the probability of an edge parameter p. We see

that the range of stability increases with p. Notice that for

networks with low connectivity p, it is unlikely to find a

game for which a fully mixed strategy is stable. In Figure

5(b), we consider Erdo†s-Renyi graphs of varying dimension

N and average degree fixed and equal 20. The figure shows

the range of stability R versus N.

We define the degree of node i is defined as ki ¼
P

j Aij.

Heterogeneity in the degree distribution is probably the most

important feature that characterizes the structure of real net-

works. The discovery that the basic structure of many real-

world networks is characterized by a power-law degree

distribution was pointed out by Barabási and Albert in their

seminal paper8 and has been verified by many observations

of real networks. Specifically, the analysis of data sets of bio-

logical, social, and technological networks has shown that

these typically exhibit a power-law degree distribution,

P(k)� k�g. Networks characterized by a power-law degree

distribution are termed scale free.

Figure 5(c) shows the range of stability R for scale free

networks of 200 nodes versus the exponent of the degree dis-

tribution, g, for which the average degree is kept fixed at 20.

The networks are generated by using the algorithm in Ref.

10. The range of stability increases with g. This indicates

that for networks with high heterogeneity (low g), we are

unlikely to find a game (or we are unlikely to be playing a

game) for which a fully mixed strategy is stable.

FIG. 5. (Color online) Plot (a) shows the range

of stability R (shown in Fig. 4(a)) for random

Erdo†s-Renyi graphs of 200 nodes versus the

probability of an edge parameter p, for 5 differ-

ent cases (grey points) for each p, with the aver-

age R connected by line segments. Plot (b)

shows the range of stability R for random

Erdo†s-Renyi graphs of dimension N and average

degree fixed and equal 20, for 10 different cases

(grey points) for each N, with the average R
connected by line segments. Plot (c) shows the

range of stability R for scale free networks of

200 nodes versus the exponent of the degree dis-

tribution, g, where the average degree is kept

fixed at 20. Plot (d) shows the range of stability

R for scale free networks of 200 nodes, g¼ 3.5,

average degree equal 20, versus the degree cor-

relation coefficient r.
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The form of the degree distribution is an important

property of the structure of a network. However, many

other distinctive properties have been uncovered to charac-

terize the structure of real networks in more detail, such as

the formation of communities of strongly interconnected

nodes, frequently detected in many real networks,11 or par-

ticular forms of correlation or mixing among the network

vertices.14

One measure of mixing is the correlation among pairs

of linked nodes according to some properties at the net-

work nodes. A very simple case is degree correlation,12 in

which vertices choose their neighbors according to their

respective degrees. Nontrivial forms of degree correlation

have been experimentally detected in many real-world net-

works, with social networks being typically characterized

by assortative mixing (which is the case where vertices are

more likely to connect to other vertices with approxi-

mately the same degree) and technological and biological

networks by disassortative mixing (which takes place

when connections are more frequent between vertices of

different degrees). In Ref. 12, degree correlation is meas-

ured by means of a single normalized index, the Pearson

statistic r defined as follows:

r ¼ 1

r2
q

X
k;k0

kk0ðekk0 � qkqk0 Þ; (15)

where qk is the probability that a randomly chosen edge is

connected to a node having degree k, rq is the standard devi-

ation of the distribution qk, and ekk0 represents the probability

that two vertices at the endpoints of a generic edge have

degrees k and k0, respectively. Positive values of r indicate

assortative mixing, while negative values characterize disas-

sortative networks.

In Figure 5(d), we show the results of a numerical simu-

lation in which we have kept the degree distribution fixed

(power law with exponent g¼ 3.5, average degree equal 20)

and we have made the coefficient r vary from �0.3 to 0.3 in

steps of 0.1 (for more details on the procedures that gener-

ates networks with different degree correlation properties,

see Refs. 12 and 27). Specifically, we show that disassorta-

tive networks (i.e., r negative) are characterized by a larger

range of stability R for the fully mixed strategy than their

assortative counterparts.

V. CONCLUSION

In this paper, we have proposed a fully deterministic

nonlinear model of an evolutionary game on a network, for

which players are allowed to pick a strategy in the interval

[0, 1], with 0 corresponding to defection, 1 to cooperation,

and intermediate values representing mixed strategies in

which each player may act as a cooperator or a defector

over a large number of interactions with a certain probabil-

ity. Our model is payoff-driven and it does not presume

knowledge of the other players’ strategies. Instead, we con-

sider that strategies evolve based on a comparison of each

player’s payoff with those of his=her neighbors. We

remove the unrealistic assumption that all the players are

equal and assume that their choice of strategy depends on a

parameter that takes into account the previous history of

the game (in terms of payoffs). Under these assumptions,

we find that fixed points of the dynamics may correspond

to either one of two qualitatively different states: fully
mixed strategies, i.e., fixed points for which all the strat-

egies are mixed and the payoffs are equal at different

nodes, or polarized strategies, i.e., fixed points for which at

least one node is a full cooperator or defector and the pay-

offs are unequal at different nodes. We derive a simple

condition that relates the network structure and the parame-

ters of the game to stability of such fixed points, which

provides a unified framework to study the effects of differ-

ent network features, such as random, scale free, and

degree-correlated topologies. This information can be used

to predict which network=game combinations promote

mixed versus polarized behavior.

In our simulations we choose a specific form for the

function f, which is consistent with the assumption that co-

operative behavior arises when the accumulated payoff

exceeds a given threshold. Such a choice is supported, e.g.,

by empirical studies that have found a positive correlation

between the level of cooperation and the payoff for players

participating in a Prisoner’s Dilemma experiment.22 Also, a

natural interpretation of our proposed update mechanism is

provided by Maslow’s motivational theory19 that assumes

that an individual’s goals change according to whether cer-

tain basic needs are satisfied or not. In the language of

game theory, this corresponds to assuming that individuals

start caring about the common good (cooperation) after

they have consolidated their individual gain (defection).

However, our stability analysis is independent of the spe-

cific choice of the function f and is valid over a broad

range of possible functions f.
We present a stability analysis for fixed points of

Eq. (6). We reduce the high-dimensional stability problem

[Eq. (9)] in the low-dimensional form of Eq. (11), which

depends on the eigenvalues of a relevant matrix. These

eigenvalues reflect the structure of the underlying network

(i.e., the matrix A) and the choice of the parameters of the

game (i.e., the two scalars b and c). Similar reductions in a

low-dimensional form have been proposed to evaluate (i)

the stability of the synchronous evolution for networks of

coupled oscillators,28–32 (ii) the stability of the consensus

state in networks of coupled integrators,33 (iii) the stability

of discrete state models of genetic control,34 and (iv) the

response of networks of coupled excitable systems to sto-

chastic stimuli.35

Our computations provide evidence of the fact that for

networks with a heterogeneous degree distribution (scale

free) or networks with low connectivity; most games played

will support the emergence of polarized strategies. However,

for networks with a homogeneous degree distribution or net-

works with high connectivity, it is more likely that strategies

will be mixed. We have also considered the effects of the net-

work degree correlation and found that disassortative net-

works are characterized by a larger range of stability R than

assortative networks. Thus, if we are given certain character-

istics of a network (e.g., connectivity, the degree distribution,
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or the degree correlation), we may be able to determine

whether polarized or mixed strategies will arise from the dy-

namics. Alternatively, if we are given a game on a network,

we may be able to modify the network to preferentially select

polarized or mixed strategies depending on our application.

One surprising observation is that making the benefit b
larger than the cost c may destabilize the mixed strategy

state, with some players converging on the pure cooperator

and some on the pure defector state. This suggests that poli-

cies governing dynamics on a network should consider the

implications of making the benefit of cooperation too high.
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APPENDIX A: THE MATRIX B HAS AT LEAST ONE
ZERO EIGENVALUE

We define (D�A) as the Laplacian matrix L. We note

that the sum of the elements of all the rows of the Laplacian

matrix L¼ (D�A) is equal zero. It follows that L has at least

one eigenvalue equal zero, with associated right eigenvector

vr¼ [1,1,…,1]T and left eigenvector v‘. Moreover, it can be

shown that this zero eigenvalue is also the only one if the

matrix A is irreducible, i.e., the associated digraph is strongly

connected. From BT¼ (bA� cD)TLT, we see that

BT v‘T¼ (bA� cD)T(LT v‘T)¼ 0 and therefore, the matrix B
has at least one eigenvalue equal zero with associated left

eigenvector v‘.

APPENDIX B: A SYMMETRIC IMPLIES THAT B HAS
REAL EIGENVALUES

The property of the matrix A of being symmetric does

not imply that the matrix B¼ (D�A)(bA� cD) is symmet-

ric. However, it can be shown that if A is symmetric, the

spectrum of B is real. In order to do this, we write the eigen-

value equation for the matrix B

wTðD� AÞðbA� cDÞ ¼ kwT ; (B1)

where k is a generic eigenvalue (wT the associated left eigen-

vector). Our goal is to show that k is real. Recall that the

graph Laplacian L¼ (D�A) is symmetric and positive semi-

definite.36 Hence, it can be decomposed as QQT, where the

matrix Q is also positive semidefinite. This yields

wTQQTðbA� cDÞ ¼ kwT : (B2)

Right multiplying Eq. (B2) by Q, we obtain

uTQTðbA� cDÞQ ¼ kuT ; (B3)

where uT¼wTQ. Since the matrix QT(bA� cD)Q is symmet-

ric it follows that k is real.

APPENDIX C: STABILITY CONDITIONS FOR B 5 C

In the limit in which b¼ c, the matrix B is equal to

B¼�b(D�A)2¼�bL2. If the matrix A is symmetric and ir-

reducible, it follows that the eigenvalues of the matrix B are

negative and that the eigenvector associated with the only

zero eigenvalue of the matrix B is [1,1,…,1]T. Thus, the fixed

point associated with this eigenvector is stable, as both con-

ditions (II) and (IIIA) presented in the main manuscript are

satisfied.
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on the evolution of cooperation have been studied in Refs. 20, 21, and

38–41.
43Answering this question is nontrivial, as we are putting ourselves in a typi-

cal situation characterized by limited information. In this paper, we focus

on situations in which agents have to make decisions in the absence of in-

formation on their neighbors’ strategies. Therefore, this kind of questions

represents a motivation for our study. Moreover, we note that the fact that

there is not an obvious answer to this question makes it an interesting sub-

ject of investigation.
44In Appendix A, we show that the matrix B has at least one zero eigenvalue.

Therefore, there is at least one eigenvector in the null subspace of the ma-

trix B, other than the null vector �0.
45Here, the location of a node in the network is identified by the nodes it is

connected to.
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