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Synchronization of dynamical hypernetworks:
Dimensionality reduction through simultaneous block-diagonalization of matrices
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We present a general framework to study stability of the synchronous solution for a hypernetwork of coupled
dynamical systems. We are able to reduce the dimensionality of the problem by using simultaneous block
diagonalization of matrices. We obtain necessary and sufficient conditions for stability of the synchronous
solution in terms of a set of lower-dimensional problems and test the predictions of our low-dimensional analysis
through numerical simulations. Under certain conditions, this technique may yield a substantial reduction of the
dimensionality of the problem. For example, for a class of dynamical hypernetworks analyzed in the paper, we
discover that arbitrarily large networks can be reduced to a collection of subsystems of dimensionality no more
than 2. We apply our reduction technique to a number of different examples, including the class of undirected
unweighted hypermotifs with 3 nodes.
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I. INTRODUCTION

Much recent work has been devoted to the study of dynam-
ical networks [1]. A few studies have considered the dynamics
of hypernetworks where the individual units are coupled
through two or more interaction networks. Hypernetworks
arise in applications as different as the spread of epidemic
diseases [2], computer viruses [3], game theory [4], social
interactions [5], and neural networks formed of both electrical
gap junctions and chemical synapses [6]. In complex adaptive
systems, different types of couplings usually coexist, including
cooperative, competitive, and symbiotic couplings [7].

In this paper, we use the term hypernetwork to indicate a
set of nodes that are coupled through connections of different
types, with the connections of the same type forming a distinct
network layer. A similar concept, which has been used to de-
scribe mainly social systems, is that of a multislice or multiplex
network [5], where both intralayer and interlayer connections
are present. Interdependent networks are usually evoked in
the context of engineering or technological applications, when
the nodes in each layer rely on their connections to nodes in
other layers for their proper functioning (e.g., the coupled
functions of the power grid and computer communication
network studied in Ref. [8]). Transportation networks have
been described as layered networks in Ref. [9]. Another
definition is that of networks of networks, which are generally
evoked when connections exist between nodes belonging to
different networks (see, e.g., Ref. [10,11]).

We are interested in the synchronization dynamics of
hypernetworks. There are many different types of synchro-
nization, including complete synchronization [12–14], phase
synchronization [15], lag synchronization [16], group or
cluster synchronization [17,18], and generalized synchroniza-
tion [19,20]. For a review of synchronization of complex
networks, the reader is referred to Ref. [21]. Synchronization
of hypernetworks has relevance to the study of any system
exhibiting multiple types of coupling. For example, studying
excitation patterns of neural networks involves the analysis of
both chemical and electrical signals between neurons [17]. As
another example, studying the synchronous motion of entire
schools of fish involves the analysis of not only the visual

cues between fish but also the release of chemical signals
into the water [22,23]. In this paper, we focus on complete
synchronization of hypernetworks.

The problem of synchronization of dynamical hypernet-
works has been first studied in Ref. [6], where special
conditions have been considered, for which the problem
of stability of the synchronous solution can be reduced to
a low-dimensional form. However, a general framework to
study stability of the synchronous solution for a dynamical
hypernetwork is lacking. In this paper, we will present a
general approach to obtain a reduction of this problem to
a low-dimensional form. We will do that by looking at
lower-dimensional graphs, whose stability will characterize
that of the original higher-dimensional network. Moreover,
the approach we present can be used to find out to what extent
the dimensionality of the original problem can be reduced.

Low-dimensional approaches have proved helpful in an-
alyzing the dynamics of networks of coupled dynamical
systems. Examples include (i) the stability of the synchronous
evolution for networks of coupled oscillators [12,14,17,24,25],
(ii) the stability of the consensus state in networks of coupled
integrators [26], (iii) the stability of discrete state models of
genetic control [27], and (iv) the stability of strategies in
networks of coupled agents playing a version of the prisoner’s
dilemma [28]. In this paper, we are interested in studying
the stability of the synchronous solution for a dynamical
hypernetwork, and we show that reducing the stability problem
to a lower-dimensional form is an available approach.

II. MODEL

We consider a dynamical hypernetwork described by the
following system of coupled differential equations:

ẋi(t) = F (xi(t)) +
M∑

k=1

N∑
j=1

A
(k)
ij Hk(xj (t − τk)), (1)

i = 1, . . . N , where xi(t) is the m-dimensional state of system i

at time t , i = 1, . . . ,N , the function F : Rm → Rm determines
the dynamics of each individual system when uncoupled; Hk :
Rm → Rm are arbitrary coupling functions, k = 1, . . . ,M ,
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τk � 0 is the time delay associated with the coupling function
Hk , k = 1, . . . ,M . The entries of the matrix A(k) = {A(k)

ij } are

such that A
(k)
ij �= 0 if node j is coupled to node i through

the coupling function Hk and A
(k)
ij = 0 otherwise. Moreover,

we require that
∑

j A
(k)
ij = ak , i.e., the sum of the entries

along the rows of each matrix A(k) is equal to ak , which is
a constant.1 Under this assumption, system (1) allows the
following synchronous solution:

x1(t) = x2(t) = · · · = xN (t) = xs(t), (2)

obeying

ẋs(t) = F (xs(t)) +
∑

k

akHk(xs(t − τk)) ≡ F̃ (xs(t)). (3)

Now, by replacing the function F with the function F̃ in (3),
we obtain

ẋi(t) = F̃ (xi(t)) +
M∑

k=1

N∑
j=1

L
(k)
ij Hk(xj (t − τk)), (4)

where each matrix L(k) = {L(k)
ij }, with L

(k)
ij = A

(k)
ij − δij a

k

has the property that
∑

j L
(k)
ij = 0, k = 1, . . . ,M , i.e., the

sum of the elements in each row is zero, and following a
common convention [1], we refer to such matrices as Laplacian
matrices.

In order to study stability of the synchronous solution, we
linearize Eqs. (4) about (2), obtaining

δẋi(t) = DF̃ (xs(t))δxi(t)

+
M∑

k=1

N∑
j=1

L
(k)
ij DHk(xs(t − τk))δxj (t − τk), (5)

or equivalently, in matrix form,

δẊ(t) = IN ⊗ DF̃ (xs(t))δX(t)

+
M∑

k=1

L(k) ⊗ DHk(xs(t − τk))δX(t − τk), (6)

where the mN -dimensional vector X(t) = [x1(t)T ,x2(t)T ,

. . . ,xN (t)T ]T , and we have used the symbol ⊗ to indicate
the Kronecker product or direct product.

For the sake of simplicity, in what follows, we focus on the
case that M = 2, for which (6) can be rewritten

δẊ(t) = IN ⊗ DF̃ (xs(t))δX(t)

+L(1) ⊗ DH1(xs(t − τ1))δX(t − τ1)

+L(2) ⊗ DH2(xs(t − τ2))δX(t − τ2). (7)

1Note that the constant-row-sum condition [i.e., that the sum of the
rows of the matrix A(k) is constant and equal to ak] is more general
than the zero-row-sum condition, usually considered for complete
synchronization [12–14]. Even when the constant-row-sum condition
is not met, its satisfaction can be dynamically obtained by means of
an adaptive strategy [34,35].

Note that (7) is an mN -dimensional system, in the sense
that it is described by mN coupled state variables.2 However,
if either τ1 > 0 or τ2 > 0 the number of initial conditions that
are needed to describe the evolution of the system can be much
larger as for each i = 1, . . . ,N , knowledge of xi(t) over a time
interval of length τmax = max τi is required. Our goal will be to
reduce the dimensionality of the system (7), by decoupling the
stability problem (7) into a set of lower-dimensional problems,
each one independent of the others.

It was shown in Ref. [6] that there are three cases for
which the mN -dimensional problem (7) can be reduced to a set
of (N − 1) 2m-dimensional problems. These three cases are
(i) the Laplacian matrices L(1) and L(2) commute; (ii) one of the
two networks, say, k = 2, is unweighted and fully connected,
i.e., L

(2)
ij = c for i �= j , L

(2)
ii = −c(N − 1), i = 1, . . . ,N ;

(iii) one of the two networks, say, k = 2, is such that the
coupling strength from node i to node j is a function of
j but not of i, i.e., L

(2)
ij = cj for i �= j , L

(2)
ii = −∑

j �=i cj ,
i = 1, . . . ,N .

However, if none of the three above conditions is satisfied
[and each of the conditions (i), (ii), (iii) generally do not
occur if the coupling strengths of the networks are arbitrarily
chosen], such a reduction is not possible. In what follows, we
will extend the results of Ref. [6] with the goal of reducing
the original stability problem to a set of n subproblems of
maximum dimension α, with 2 � α � N , depending on the
properties of the matrices L(k), k = 1, . . . ,M .

In general, we will be interested in addressing the following
algebraic problem: Given the set of N -square real matrices
L = {L(1),L(2), . . . ,L(M)}, find the finest simultaneous block
diagonalization (SBD) ofL. The problem consists in finding an
invertible matrix P , such that P −1L(i)P = ⊕n

j=1B
i
j , where the

symbol ⊕ denotes the direct sum of matrices, B1
j ,B

2
j , . . . ,B

n
j

are square matrix blocks of dimension bj , and
∑n

j=1 bj = N .
The diagonalization is said to be the finest if the maximum
block dimension bmax = maxn

j=1 bj is minimal with respect to
the choice of P .

Hereafter, we briefly review an algorithm for SBD of sets of
matrices. Such a block-diagonal decomposition is not unique
in general and naturally we are interested in finding the matrix
P that provides the finest decomposition.

Instead of trying to tackle the problem directly, the approach
in Refs. [29,30] aims at finding a basis that diagonalizes
the ∗-algebra associated with the algebra generated by L.
This corresponds to finding a matrix U that simultaneously
commutes with the matrices L(1),L(2), . . . ,L(M), i.e., that
simultaneously satisfies the following sets of equations:

UL(i) − L(i)U = 0, (8)

i = 1, . . . ,M .
The steps of the algorithm are described in what follows:
(i) Let O(i) be the N2 matrix O(i) = IN ⊗ L(i) − L(i) ⊗ IN .
(ii) Construct the matrix S = ∑M

i=1 O(i)T O(i).

2However, if either τ1 > 0 or τ2 > 0 the number of initial conditions
that are needed to describe the evolution of the system can be much
larger as for each i = 1, . . . ,N, knowledge of xi(t) over a time
interval of length τmax = maxτi is required.
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(iii) Let y be any N2 vector in the null subspace of the
matrix S. The N2 vector u can be subdivided in N vectors of
dimension N as follows, u = [uT

1 ,uT
2 , . . . ,uT

N ]T .
(iv) Obtain U as the matrix whose columns are

u1, u2, . . . , uN .
(v) Finally, P can be constructed as the matrix whose

columns are the eigenvectors of U .
In certain situations (when for example, a satisfactory SBD

reduction is not available), we might be interested in finding a
parameterized (approximate) SBD, which can be formulated
as follows. Given a parameter ε > 0, find the invertible N -
square matrix P such that P −1L(i)P = ⊕n

j=1B
i
j + E(i), i =

1, . . . ,M , and the N dimensional matrices E(i), i = 1, . . . ,M ,
are of order ε in magnitude. An error controlled version of the
SBD algorithm can be found in Ref. [16].

Now consider problem (7). Suppose we have been able to
find the finest SBD forL = {L(1),L(2)} and that this is provided
by the invertible matrix P . Then we left-multiply both sides
of Eq. (7) by P −1 ⊗ Im and by using the change of variables
η(t) = P −1 ⊗ ImδX(t), we can rewrite (7) as follows:

η̇(t) = IN ⊗ DF̃ (xs(t))η(t)

+ (⊕n
j=1 B

(1)
j

) ⊗ DH1(xs(t − τ1))η(t − τ1)

+ (⊕n
j=1 B

(2)
j

) ⊗ DH2(xs(t − τ2))η(t − τ2). (9)

It is easy to see then that the system of equations (9) can be
decomposed into the following n subsystems:

η̇j (t) = Ibj
⊗ DF̃ (xs(t))ηj (t)

+B
(1)
j ⊗ DH1(xs(t − τ1))ηj (t − τ1)

+B
(2)
j ⊗ DH2(xs(t − τ2))ηj (t − τ2), (10)

j = 1, . . . ,n, where each vector ηj (t) has dimension mbj

and evolves independently from the others. Moreover,∑
j bj = N . Each of these subsystems is forced by the

synchronous evolution xs(t), which obeys Eq. (3). Thus the
original mN -dimensional problem has been reduced to n

lower-dimensional problems, each with dimension m(b1 +
1),m(b2 + 1), . . . ,m(bn + 1). Also, our proposed goal has
been achieved with α = (bmax + 1), where 2 � α � N . More-
over, this reduction is the finest, in the sense that it is not
possible to obtain another reduction in an (α − 1)-dimensional
form, provided that the original block diagonalization was the
finest.

We note that by construction, the matrices L(k), k =
1, . . . ,M , have a zero eigenvalue with associated eigenvector
[1,1, . . . ,1]T . Hence, when obtaining the finest SBD, there
must be a one-dimensional subsystem, indexed j = 1, for
which B

(k)
1 = 0, k = 1, . . . ,M , yielding

η̇1(t) = DF̃ (xs(t))η1(t). (11)

We note that this one equation is associated with perturbations
lying in the direction parallel to the synchronization manifold
(given by the eigenvector [1,1, . . . ,1]T ), and therefore it is ir-
relevant in determining transversal stability of the synchronous
solution.

For a generic subsystem of dimension D, we may want
to identify a minimal set of parameters (p1,p2, . . . ,prD

)

that characterize stability. In general, it can be shown that
the minimum number of parameters is rD = D2 + 1 (see
Sec. II A). However, for some specific cases, it is possible
to parametrize a D-dimensional subsystem by using less than
rD parameters.

A. The particular case that bmax = 2

We now look at Eq. (10) and consider the particular case that
bmax = 2, i.e., α = 3. We further assume that the simultaneous
block diagonalization yields μ blocks of dimension 1 and ν

blocks of dimension 2, with (μ + 2ν) = (N − 1). The problem
that we want to address in this section is described below.

Consider all the pairs of matrices L = {L(1),L(2)} such that
a simultaneous block-diagonalization can be achieved with
bmax = 2. For blocks of dimension D = {1,2}, we aim at
finding a reduction of the stability problem to a parametric
form in the rD scalar parameters (p1,p2, . . . ,prD

), such that
rD is minimal. In what follows, we independently address
this problem for blocks of dimension D = 1 and blocks
of dimension D = 2, and we show that r1 = 2 and r2 = 5.
We also obtain a general relation between rD and the block
dimension D.

It is easy to see that for blocks of dimension 1, Eq. (10)
becomes

η̇j (t) = DF̃ (xs(t))ηj (t)

+B
(1)
j DH1(xs(t − τ1))ηj (t − τ1)

+B
(2)
j DH2(xs(t − τ2))ηj (t − τ2), (12)

j = 1, . . . ,μ, where ηj (t) has dimension m and B
(1)
j and

B
(2)
j are two scalar (occasionally, complex) parameters. Each

subsystem (12) is parametrized by the pair (B(1)
j ,B

(2)
j ). Hence,

r1 = 2.
For blocks of dimension 2, Eq. (10) becomes

η̇j (t) = I2 ⊗ DF̃ (xs(t))ηj (t)

+B
(1)
j ⊗ DH1(xs(t − τ1))ηj (t − τ1)

+B
(2)
j ⊗ DH2(xs(t − τ2))ηj (t − τ2), (13)

j = 1, . . . ,ν, where ηj (t) has dimension 2m and B
(1)
j and B

(2)
j

are two square matrices of dimension 2. We note that it is
possible to further diagonalize either one of the two matrices
B

(1)
j or B

(2)
j ; without loss of generality, we diagonalize B

(1)
j ,

obtaining B
(1)
j = Wj�jW

−1
j . By premultiplying each block

(13) by W−1
j ⊗ Im, we obtain

ζ̇j (t) = I2 ⊗ DF̃ (xs(t))ζj (t)

+�j ⊗ DH1(xs(t − τ1))ζj (t − τ1)

+Qj ⊗ DH2(xs(t − τ2))ζj (t − τ2), (14)

j = 1, . . . ,ν, where ζj (t) = W−1
j ⊗ Imηj (t), �j is the follow-

ing diagonal matrix:

�j =
[

λ1
j 0

0 λ2
j

]
, (15)
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and the matrix Qj = W−1
j B

(1)
j Wj is the following:

Qj =
[

q11
j q12

j

q21
j q22

j

]
. (16)

We see that for each block j = 1, . . . ,ν, stability depends on
the following set of scalar parameters (λ1

j ,λ
2
j ,q

11
j ,q12

j ,q21
j ,q22

j ).
From (13), (15), and (16) we see that Eq. (14) can be
decomposed into the following two coupled equations:

ζ̇ 1
j (t) = DF̃ (xs(t))ζ 1

j (t) + λ1
jDH1(xs(t − τ1))ζ 1

j (t − τ1)

+ q11
j DH2(xs(t − τ2))ζ 1

j (t − τ2)

+ q12
j DH2(xs(t − τ2))ζ 2

j (t − τ2),

ζ̇ 2
j (t) = DF̃ (xs(t))ζ 2

j (t) + λ2
jDH1(xs(t − τ1))ζ 2

j (t − τ1)

+ q21
j DH2(xs(t − τ2))ζ 1

j (t − τ2)

+ q22
j DH2(xs(t − τ2))ζ 2

j (t − τ2), (17)

where the vector ζj = [ζ 1
j

T
(t),ζ 2

j

T
(t)]T . Now, with the substi-

tution, q12
j ζ 2

j (t) → ζ 2
j (t), we can rewrite (17)

ζ̇ 1
j (t) = DF̃ (xs(t))ζ 1

j (t) + λ1
jDH1(xs(t − τ1))ζ 1

j (t − τ1)

+ q11
j DH2(xs(t − τ2))ζ 1

j (t − τ2)

+DH2(xs(t − τ2))ζ 2
j (t − τ2),

ζ̇ 2
j (t) = DF̃ (xs(t))ζ 2

j (t) + λ2
jDH1(xs(t − τ1))ζ 2

j (t − τ1)

+ q12
j q21

j DH2(xs(t − τ2))ζ 1
j (t − τ2)

+ q22
j DH2(xs(t − τ2))ζ 2

j (t − τ2). (18)

Thus each subsystem (18), j = 1, . . . ,ν, is described
by the following set of r2 = 5 scalar parameters
(λ1

j ,λ
2
j ,q

11
j ,q12

j q21
j ,q22

j ). It follows that for 2-dimensional
subsystems, r2 = 5.

We conclude that each one-dimensional subsystem j =
1, . . . ,μ can be associated with a master stability function
M1(B(1)

j ,B
(2)
j ) which returns the maximum Lyapunov expo-

nent of Eq. (12) as a function of the pair (B(1)
j ,B

(2)
j ). Also, each

two-dimensional subsystem j = 1, . . . ,ν can be associated
with a master stability function M2(λ1

j ,λ
2
j ,q

11
j ,q12

j q21
j ,q22

j )
which returns the maximum Lyapunov exponent of Eq. (17) as
a function of the five-tuple (λ1

j ,λ
2
j ,q

11
j ,q12

j q21
j ,q22

j ). Once the
master stability functions M1,M2 are known, stability of the
synchronous solution for a generic dynamical hypernetwork
[described by Eq. (1) with M = 2] that allows a simultaneous
block diagonalization with bmax = 2 can be determined by
knowledge of the pairs (B(1)

j ,B
(2)
j ) for blocks of dimension

1 and of the five-tuples (λ1
j ,λ

2
j ,q

11
j ,q12

j q21
j ,q22

j ) for blocks of
dimension 2.

By extending the above reasoning to subsystems of higher
dimension D, it can be shown that rD = D2 + 1.

III. NUMERICAL EXAMPLES

The left-hand side of Fig. 1 shows a special class
of hypernetworks for which the stability problem can be

conveniently reduced by using SBD. The class contains
all hypernetworks made from two identical fully connected
graphs (FCGs), each of size N

2 , that are connected to one
another only by a single alternative connection. The parameter
a is the coupling strength of all the connections inside each
FCG, and the parameter b is the coupling strengths of the
alternative connection. The associated Laplacian matrices do
not commute unless either a = 0 or b = 0. As can be seen on
the right-hand side of Fig. 1, we discover that a hypernetwork
in this configuration can always be reduced to a collection
of subsystems of dimensionality no more than 2, that is, one
subsystem of dimension 2 and (N − 3) identical subsystems of
dimension 1 (we neglect the one subsystem that is associated
with perturbations parallel to the synchronization manifold).
The reduction to this form becomes particularly advantageous
when the dimension of the original hypernetwork N is large.
From the SBD decomposition (described in Sec. II), we obtain
that the parameter d in the figure depends upon the size of the
hypernetwork, i.e., d = a(N

2 − 1).
As an example, we consider the hypernetwork shown on

the left-hand side of Fig. 1 of dimension N = 6. Its dynamics
is described by the set of Eqs. (1), where each individual node
obeys the equation of the Lorenz chaotic system, for which
m = 3, x(t) = (x1(t),x2(t),x3(t))T :

F (x) =

⎡
⎢⎣

10[x2(t) − x1(t)]

x1(t)[28 − x3(t)] − x2(t)

x1(t)x2(t) − 2x3(t)

⎤
⎥⎦ , (19)

H1(x(t)) = [0,x2(t),0]T , H2(x(t)) = [x1(t),0,x3(t)]T , and
τ1 = τ2 = 0. The adjacency matrices A(1) and A(2) correspond,
respectively, to the black [black] and gray [red] connections of
the N = 6 hypernetwork in Fig. 1 and are defined as follows:
A

(1)
ij = A

(1)
ji = a if (i − θ ) × (j − θ ) > 0, 0 otherwise, where

θ = N+1
2 ; A

(2)
ij = A

(2)
ji = 0 except for the one pair (i = i∗,j =

FIG. 1. (Color online) A special class of hypernetwork configu-
rations. These hypernetworks shown on the left can be neatly reduced
into the (N − 2) subsystems shown on the right. The reduction yields
a single two-node system, followed by (N − 3) one-node systems.
Stability of the hypernetworks on the left corresponds to that of the
lower-dimensional subsystems on the right.
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j ∗), with 1 � i∗ � N
2 and N

2 + 1 � j ∗ � N . L
(k)
ij = (A(k)

ij −
δij

∑
� A

(k)
i� ), k = {1,2}.

From the SBD procedure, we obtain that stability of the
original Nm-dimensional system can be reduced to that of
two lower-dimensional systems, one of dimension m and one
of dimension 2m (see Fig. 1). We independently compute the
maximum Lyapunov exponent (MLE) for both these systems.
For the m-dimensional subsystem, we find that the condition
for stability is that a N

2 > 2.29. For the 2m-dimensional
subsystem, we record the maximum Lyapunov exponent as
a function of the pair (a,b), for the specific case of N = 6.
The results of our numerical computations are summarized in
the upper plot of Fig. 2, where the light gray [yellow] area
corresponds to the region of the (a,b) plane for which the
MLE of the m-dimensional subsystem is negative and the dark
gray [gray] area corresponds to the region of the (a,b) plane
for which the MLE of the 2m-dimensional system is negative.
Note that for this case, the intersection coincides with the dark
gray [gray] area.

In order to test our low-dimensional predictions, we
numerically integrate Eqs. (1) from an initial condition close
to the synchronization manifold. For each run, we monitor the
average synchronization error E:

E(t) = (Nt)−1
N∑

i=1

∫ t+t

t

‖xi(τ ) − x̄(τ )‖ dτ, (20)

FIG. 2. (Color online) The upper plot shows the areas of the (a,b)
plane corresponding to a negative MLE for both the m-dimensional
subsystem (light gray [yellow]) and the 2m-dimensional subsystems
(dark gray [gray]). We expect stability of the original hypernetwork
in the intersection of the light gray [yellow] and dark gray [gray]
areas. The lower plot shows simulations of the full high-dimensional
hypernetwork, N = 6; we plot in gray the area of the (a,b) plane for
which the synchronization error E(t) decreases steadily below 1% of
its initial value.

FIG. 3. (Color online) On the left, A hypernetwork formed of two
identical fully connected graphs, each of size N

2 , connected to one
another by a set of R alternative connections, 1 � R < N/2. The
endpoints of the alternative connections never coincide in the same
node. The case that R = 1 corresponds to that studied above in Fig. 1.
These hypernetworks shown on the left can be neatly reduced into the
(N − 2) subsystems shown on the right. The reduction yields a single
two-node system, followed by (N − 3) one-node systems, which are
divided into two distinct groups of (R − 1) and (N − 2 − R) identical
subsystems. Stability of the hypernetworks on the left corresponds to
that of the lower-dimensional subsystems on the right.

where x̄(t) = N−1 ∑N
i=1 xi(t) and ‖ξ‖ indicates the Euclidean

norm of the vector ξ . The lower plot of Fig. 2 shows the
area of the (a,b) plane for which E(t) is observed to decrease
steadily below 1% of its initial value. As can be seen from the
upper and lower plots of Fig. 2, there is very good agreement
between the dynamics of the original hypernetwork and its
low-dimensional counterpart.

We also considered the case shown in Fig. 3 that the two
FCG graphs are connected by R alternative connections rather
than 1, each one with associated strength b, and such that the
endpoints of these R connections never coincide in the same
node. How is the stability of this hypernetwork going to be
characterized? In what follows, we restrict our attention to
the case that 1 � R < N/2. By applying the SBD procedure,
we discover that, as can be seen from Fig. 3, a hypernetwork
in this configuration can always be reduced to a collection
of subsystems of dimensionality no more than 2, that is,
one subsystem of dimension 2 and (N − 3) subsystems of
dimension 1 (we neglect the one subsystem that is associated
with perturbations parallel to the synchronization manifold).
The one subsystem of dimension 2 depends on the number
of alternative connections R, with the parameters shown in
the figure d ′ = a(N

2 − R) and a′ = aR. Moreover, for this
more general case, as can be seen on the right-hand side of
Fig. 3, the remaining (N − 3) subsystems of dimension 1 are
divided in two distinct groups of (R − 1) and (N − 2 − R)
identical subsystems. Then, in order to characterize stability
of hypernetworks in this configuration, we have to consider
stability of all the three different types of subsystems that arise
from the reduction. Stability would occur in a region in the
parameter space which is the intersection of the three resulting
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FIG. 4. (Color online) On the left, a hypernetwork formed of
two interaction graphs. Each node represents a linearized system. On
the right, we have obtained a reduction into two lower dimensional
systems: one of b1 = 2 nodes and another one formed of b2 = 1 node.

stability regions. The reduction would still be very significant
for large enough values of N .

As another example, we consider the hypernetwork shown
on the left-hand side of Fig. 4. From the figure we see that the
hypernetwork is composed of M = 2 different networks, each
one associated with a different coupling function Hk (to be
defined in what follows). Hence, the linearized problem can
be cast exactly in the form of Eq. (7) with M = 2, where the
two Laplacian matrices are as follows:

L(1) = {
L

(1)
ij

} =

⎛
⎜⎝

−a 0 a 0
0 −a 0 a

a 0 −a 0
0 a 0 −a

⎞
⎟⎠, (21)

associated with the black [black] connections in the figure, and

L(2) = {
L

(2)
ij

} =

⎛
⎜⎝

−a a 0 0
a −a 0 0
0 0 −b b

0 0 b −b

⎞
⎟⎠, (22)

associated with the gray [red] connections in the figure.
The two matrices do not commute unless b = a. Therefore,

we consider the case b �= a. The dynamical hypernetwork is
described by the set of Eqs. (1), where each individual node
obeys the equation of the Lorenz chaotic system, for which
m = 3, x(t) = (x1(t),x2(t),x3(t))T :

F (x) =

⎡
⎢⎣

10[x2(t) − x1(t)]

x1(t)[28 − x3(t)] − x2(t)

x1(t)x2(t) − 8
3x3(t)

⎤
⎥⎦ , (23)

H1(x(t)) = [x1(t),0,0]T , H2(x(t)) = [0,0,x3(t)]T , and τ1 =
τ2 = 0.

By using the procedure described in Ref. [29], we find a
matrix P ,

P =

⎡
⎢⎢⎢⎣

−0.5000 −0.5000 −0.4330 −0.5590

−0.5000 −0.5000 0.4330 0.5590

−0.5000 0.5000 −0.5590 0.4330

−0.5000 0.5000 0.5590 −0.4330

⎤
⎥⎥⎥⎦ , (24)

that simultaneously block-diagonalizes L(1) and L(2). By
using P , we obtain that the original 4m-dimensional system
can be decomposed into two m-dimensional systems in the
blocks (0,0) and (−2a,0) and one 2m-dimensional system.
The subsystem associated with the pair (0,0) corresponds to
perturbations parallel to the synchronization manifold and as
such is irrelevant in determining transversal stability of the
synchronous solution.

By further diagonalizing the one 2m-dimensional subsys-
tem, we obtain that this can be recast into the form

ζ̇j (t) = I2 ⊗ DF̃ (xs(t))ζj (t)

+�j ⊗ DH1(xs(t − τ1))ζj (t − τ1)

+Qj ⊗ DH2(xs(t − τ2))ζj (t − τ2), (25)

with

�j =
[

0 0

0 −2a

]
(26)

and

Qj =
[−(a + b) 1

(b − a)2 −(a + b)

]
. (27)

The procedure to obtain Eq. (25) is illustrated in Sec. II A,
compare with Eq. (14) therein. The right-hand side of Fig. 4
shows the two lower-dimensional subsystems in which the
stability problem has been reduced. We observe that for this
specific problem, stability of both the m and 2m-dimensional
subsystems can be conveniently parameterized in the pair
(a,b). The upper plot of Fig. 5 shows the sign of the
maximum Lyapunov exponent (MLE) associated with both
the m and 2m-dimensional subsystems in the (a,b) plane. The
area associated with a negative MLE for the m-dimensional
subsystem is colored in light gray [yellow] and the area
associated with a negative MLE for the 2m-dimensional
subsystem is colored in dark gray [gray]. We expect stability
of the original hypernetwork in the intersection of the light
gray [yellow] and dark gray [gray] areas in the figure.

In order to test our predictions, we numerically integrate
from an initial condition close to the synchronization manifold
the equations of the dynamical hypernetwork (1), with M =
2, the function F given in (23), H1(x(t)) = [x1(t),0,0]T ,
H2(x(t)) = [0,0,x3(t)]T , τ1 = τ2 = 0, and the two Laplacian
matrices L(1) and L(2) given in Eqs. (21) and (22). For
each run, we monitor the average synchronization error E,
defined in Eq. (20). The lower plot of Fig. 5 shows the final
synchronization error E versus b for a = 4, which converges to
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FIG. 5. (Color online) The upper plot shows the areas of the (a,b)
plane to which corresponds a negative maximum Lyapunov exponent
(MLE) for both the m-dimensional subsystem on the right-hand side
of Fig. 4 (light gray [yellow]) and the 2m-dimensional subsystems on
the right-hand side of Fig. 4 (dark gray [gray]). We expect stability of
the original hypernetwork in the intersection of the light gray [yellow]
and dark gray [gray] areas. The lower plot shows the synchronization
error E versus b for a = 4, which converges to zero in the stability
interval predicted by the lower-dimensional analysis.

zero in the stability interval predicted by the lower-dimensional
analysis.

A. Dynamical hypermotifs

As a further application of our theory, we have considered
the synchronization of dynamical hypermotifs. Motifs were
introduced in Ref. [31] as recurrent patterns of interconnec-
tions occurring in complex networks. Synchronization of small
network motifs has been studied in [32,33]. Here, we are
interested in hypermotifs, i.e., motifs with multiple types of
coupling.

In particular, we have considered the class of all the possible
N = 3-node unweighted undirected hypermotifs with M = 2
connection types. We have assumed all the connections to
have unit weight. We have obtained a list of six different such
hypermotifs, excluding those for which A(1) = A(2) and those
obtained from one of the motifs in the list by interchanging
the matrix A(1) with the matrix A(2).

Figure 6 shows all of these six hypermotifs, labeled as A–F.
We have found that for the hypermotifs D–F the Laplacian
matrices associated with A(1) and A(2) commute. Instead, for
the hypermotifs A–C, we have applied the SBD procedure to
reduce them in their lower-dimensional form. Their lower-
dimensional counterparts are also shown in Fig. 6 (center
column). The study of more elaborated hypermotifs (e.g., with
direct connections or with more than 3 nodes) is beyond the
scope of this paper.

FIG. 6. (Color online) A–F are all the possible unweighted
undirected hypermotifs with N = 3 nodes and M = 2 connection
types, excluding those for which A(1) = A(2) and those obtained
from A–F by interchanging the matrix A(1) with the matrix A(2).
All the connections in A–F have associated unitary weights. For
the hypermotifs A–C we use the SBD procedure to reduce them to
their lower-dimensional form (the corresponding lower dimensional
graphs are those in the center column). For hypermotifs D–F, the
Laplacian matrices associated with A(1) and A(2) commute. Hence,
their dynamical reduction is not shown.

IV. CONCLUSIONS

In this paper, we introduced a general framework to
study stability of the synchronous solution of a dynamical
hypernetwork by means of a dimensionality reduction strategy.
For any set of arbitrarily chosen coupling matrices, we are able
to obtain the finest SBD (simultaneous block diagonalization)
and to evaluate stability of the synchronous solution based
on that. Under certain conditions, this technique may yield a
substantial reduction of the dimensionality of the problem. For
example, for a class of dynamical hypernetworks analyzed in
this paper, we discovered that arbitrarily large networks can
be reduced to a collection of subsystems of dimensionality
no more than 2. Other times the reduction may be less
significant.

We have applied our reduction techique to a number of
different examples, including small undirected unweighted
hypermotifs with 3 nodes. An important advantage of the SBD
decomposition is that it can be used to find out to what extent
the dimensionality of the original problem can be reduced.
The study of synchronization of large arbitrary dynamical
hypernetworks is the subject of ongoing investigations.
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