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Abstract. We consider the synchronization of coupled dynamical systems
when different types of interactions are simultaneously present. We assume that
a set of dynamical systems is coupled through the connections of two or more
distinct networks (each of which corresponds to a distinct type of interaction),
and we refer to such a system as a dynamical hypernetwork. Applications include
neural networks made up of both electrical gap junctions and chemical synapses,
the coordinated motion of shoals of fish communicating through both vision
and flow sensing, and hypernetworks of coupled chaotic oscillators. We first
analyze the case of a hypernetwork made up of m = 2 networks. We look
for the necessary and sufficient conditions for synchronization. We attempt to
reduce the linear stability problem to a master stability function (MSF) form,
i.e. decoupling the effects of the coupling functions from the structure of the
networks. Unfortunately, we are unable to obtain a reduction in an MSF form
for the general case. However, we show that such a reduction is possible in three
cases of interest: (i) the Laplacian matrices associated with the two networks
commute; (ii) one of the two networks is unweighted and fully connected; and
(iii) one of the two networks is such that the coupling strength from node i to
node j is a function of j but not of i . Furthermore, we define a class of networks
such that if either one of the two coupling networks belongs to this class, the
reduction can be obtained independently of the other network. As an example
of interest, we study synchronization of a neural hypernetwork for which the
connections can be either chemical synapses or electrical gap junctions. We
propose a generalization of our stability results to the case of hypernetworks
formed of m > 2 networks.
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1. Introduction

Synchronization of coupled dynamical systems has been the subject of a considerable
amount of research (see, e.g., [1–5]) with applications ranging from adaptive synchronization
strategies [6–11] to pinning control [12–15]. One case of interest is that of complete
synchronization that occurs when the individual systems, if appropriately coupled, converge
on the same time evolution. Complete synchronization can be observed in the presence of
selective coupling, i.e. the systems are coupled through the connections of a network. A common
underlying assumption is that the interactions among the systems are all of the same type. For
this case, it has been shown that stability of the synchronized state depends on the details of the
underlying network topology.

In this framework, the master stability function (MSF) approach [2] to synchronization
of networks of coupled identical dynamical systems has been widely investigated in the
literature [16–19]. An outstanding problem is how to obtain a reduction of the stability problem
in an MSF form when the set of coupled dynamical systems simultaneously interact through
different networks, with each network being associated with a distinct coupling function.

In this paper, we will focus on complete synchronization and we will retain selective
coupling but we will allow for different types of couplings between the systems. We assume
that all the connections that correspond to the same type of coupling form a network and the
systems are connected by more than one network. This case is relevant to any situation where
the individual units are allowed to interact through different types of coupling. For example,
neurons in the brain are connected through both electrical gap junctions and chemical synapses;
see, e.g., [20, 21]. The coordinated motion of shoals of fish depends on the sensory capabilities
of each individual fish. Fish typically use not only vision but also chemical/flow sensing in order
to localize their mates and coordinate their individual motion with respect to the shoal [22, 23]
(as in other animal species, the number of neighbors that can be simultaneously sensed by each
fish is typically bounded and depends on the specific kind of interaction [24]). Another example
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is that of interdependent networks, such as, e.g., the coupled infrastructure of power stations
and internet communication servers [25]. In recent years, the possibility of cascades of faults
through coupled interdependent networks has been pointed out as a crucial aspect with respect
to the assessment and design of critical infrastructures [26].

In this paper, we consider that a set of identical dynamical systems ẋi = F(xi(t)), i =

1, 2, . . . , N , is coupled through the connections of m different networks, and we refer to such
a system as a hypernetwork; see, e.g., [27–29]1 . We first consider the case of m = 2 networks
(a generalization to the case of m > 2 networks will be presented in section 4). The systems are
then coupled as follows,

ẋi(t) = F(xi(t)) + σ A
N∑

j=1

Ai j [G(x j(t − τg)) − G(xi(t − τg))]

+σ B
N∑

j=1

Bi j [H(x j(t − τh)) − H(xi(t − τh))], (1)

i = 1, 2, . . . , N , where xi(t) = [x1
i (t), x2

i (t), . . . , xn
i (t)]T is the n-dimensional state of node i ,

F : Rn
→ Rn represents the dynamics of each individual unit, G : Rn

→ Rn and H : Rn
→ Rn

are different coupling functions, τg and τh are (possibly) different interaction delays and σ A and
σ B are two scalar coefficients. As can be seen from (1), the interactions between the individual
units are those of two distinct networks, which are represented by the two distinct adjacency
matrices A = {Ai j} and B = {Bi j}. Thus, equations (1) describe a hypernetwork of coupled
dynamical systems.

An equivalent way of writing equations (1) is the following,

ẋi(t) = F(xi(t)) + σ A
N∑

j=1

L A
i j G(x j(t − τg)) + σ B

N∑
j=1

L B
i j H(x j(t − τh)), (2)

i = 1, 2, . . . , N , where L A
i j = Ai j − δi j

∑
j Ai j and L B

i j = Bi j − δi j
∑

j Bi j are two Laplacian
matrices. Let {λA

i } and {λB
i } be the set of eigenvalues associated, respectively, with the two

matrices L A and L B . By construction, both matrices L A and L B have one eigenvalue, λA
N = 0

and λB
N = 0, with associated eigenvector [1, 1, . . . , 1]. The nN dimensional state space of the

system in equations (2) contains an n-dimensional synchronization manifold I,

x1(t) = x2(t) = · · · = xN (t). (3)

Note that if a solution belongs to I over a time interval [t0, t0 + τmax], where τmax = max(τg, τh),
then the solution will belong to I, for any time t > t0 + τmax. In this case, the synchronized
solutions x1(t) = x2(t) = . . . = xN (t) = xs(t) are characterized by the same dynamics as that of
an uncoupled system,

ẋs(t) = F(xs(t)). (4)

The main goal of this paper is to study linear stability of the synchronous solution (3), (4) for the
set of equations (2). The same problem for the case when the systems are coupled through

1 Another definition used in the literature to refer to such systems is that of multislice networks [53].
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the connections of only one network, i.e. L B
i j = 0 in equation (2) has been intensively studied

in the literature; see, e.g., [2, 18, 30–36]. For this case it can be shown that the linear
stability of the synchronous solution can be analyzed in terms of the following low-dimensional
equation:

δ ˙̄x(t) = DF(xs(t))δ x̄(t) + σ AλA
k DH(xs(t − τh))δ x̄(t − τh), (5)

where DF (DH ) represents the Jacobian matrix of the function F (H ). In particular, the
condition for stability is that the maximum Lyapunov exponents2 associated with equation (5)
are negative for k = 1, . . . , (N − 1). Equation (5) for k = N yields

δ ˙̄x(t) = DF(xs(t))δ x̄(t), (6)

which corresponds to the linearized equation for the evolution in the synchronization
manifold (3). Equation (5) is a system of n scalar differential equations as opposed to the
linearized system (2), which is described by nN scalar differential equations. Hence, system (5)
is termed low-dimensional. The nice thing about this approach is that it provides necessary and
sufficient conditions for synchronization. Similar conditions have been obtained for networks of
groups [17], for adaptive synchronization of complex networks [37, 38], for the pinning control
problem applied to a complex network [39, 40] and for the case that slight deviations from
nominal conditions are present [19, 41, 42]. In this paper, we attempt to obtain a condition in
terms of a low-dimensional equation for the more complex case when the systems are coupled
through the connections of two different networks (equation (2)). However, as we will see, our
proposed problem is not easy to solve in general.

In what follows, we first consider the case when the two matrices A and B in (1) are
arbitrary and we show that the stability problem does not admit a solution in a low-dimensional
form. Then we focus on three examples of interest for which we show that such a reduction is
possible:

• The two Laplacian matrices L A and L B commute.

• One of the networks (either A or B) is unweighted and fully connected.

• One of the two networks (say, e.g., A) is such that Ai j = a j , i, j = 1, . . . , N .

The rest of this paper is organized as follows. In section 2, we attempt to obtain
the necessary and sufficient conditions for stability of the synchronous solution for a
hypernetwork (2). However, we show that unfortunately it is not always possible to reduce the
problem into a low-dimensional form. However, we analyze three cases of interest for which
such a reduction is possible. Furthermore, we define a class of networks such that if one of the
two coupling networks belongs to this class, the reduction can be obtained independently of
the other network. Numerical simulations are shown in section 3. In section 4, we generalize
our results to the case of hypernetworks made of m > 2 networks. A more general class of
hypernetworks that are not described by the set of equations (1) is discussed in section 5, where
an example of the network of neurons connected by both electrical gap-junctions and chemical
synapses is presented. Finally, the conclusions are given in section 6.

2 For τh > 0, each one of the equations in (5) is infinite dimensional and therefore has an infinite number of
Lyapunov exponents; yet there must be one among these that is the maximum.
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2. Stability analysis

We consider the stability of equations (2) about the synchronous solution (3). Linearization of
equations (2) about (3) yields

δ ẋi(t) = DF(xs(t))δxi(t) + σ A
N∑

j=1

L A
i j DG(xs(t − τg))δx j(t − τg)

+σ B
N∑

j=1

L B
i j DH(xs(t − τh))δx j(t − τh), (7)

i = 1, 2, . . . , N . The set of equations (7) can be rewritten in vectorial form as follows:

δ ẋ(t) = IN ⊗ DF(xs(t))δx(t) + σ A L A
⊗ DG(xs(t − τg))δx(t − τg)

+σ B L B
⊗ DH(xs(t − τh))δx(t − τh), (8)

where δx(t) = [δx1(t)T, δx2(t)T, . . . , δxN (t)T]T and the symbol ⊗ indicates the direct product or
Kronecker product. Now we proceed under the assumption that at least one of the two Laplacian
matrices, say L A, is diagonalizable, i.e. L A

= V 3AV −1, where 3A is a diagonal matrix with the
elements on the main diagonal being the eigenvalues λA

1 , λA
2 , . . . , λA

N and V is a matrix whose
columns are the associated eigenvectors, v1, v2, . . . , vN . Then, by introducing the change of
variables, η(t) = V −1

⊗ Inδx(t), equation (8) becomes

η̇(t) = IN ⊗ DF(xs(t))η(t) + σ A3A
⊗ DG(xs(t − τg))η(t − τg)

+σ B4 ⊗ DH(xs(t − τh))η(t − τh), (9)

where the matrix 4 = V −1L B V . It would be nice if the matrix 4 were diagonal but
unfortunately there is no guarantee that this will be the case in general. Then we see from
equation (9) that, different from the classical MSF derivation [2], it is not possible to decouple
equation (9) in N blocks, each one independent of the others.

2.1. The case when the two matrices L A and L B commute

A special case is when the two matrices L A and L B commute. Two matrices that commute
have the property of sharing the same set of eigenvectors, i.e. assuming that they are both
independently diagonalizable, it is possible to write L A

= V 3AV −1 and L B
= V 3B V −1, where

3B is a diagonal matrix with the elements on the main diagonal being the eigenvalues of
the matrix L B . Thus, for this case, the matrix 4 coincides with the diagonal matrix 3B as
4 = V −1V 3B V −1V = 3B . It follows that equation (9) can be decomposed into N blocks
independent of each other,

η̇k(t) = DF(xs(t))ηk(t) + σ AλA
k DG(xs(t − τg))ηk(t − τg) + σ BλB

k DH(xs(t − τh))ηk(t − τh),

(10)

k = 1, . . . , N , where λA
k and λB

k are, respectively, the (complex) eigenvalues of the matrices
L A and L B , which are associated with the same eigenvectors, i.e. such that L Avk = λA

k vk and
L Bvk = λB

k vk . Recall that the eigenvalues λA
N = λB

N = 0 and the corresponding eigenvector is
[1, 1 . . . 1]. Then for k = N , equation (10) yields

η̇N (t) = DF(xs(t))ηN (t), (11)
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 −1

−1
2

 (b) (a)

Figure 1. An example of two graphs with associated commuting Laplacian
matrices. (a) All the links have associated weight equal to one. (b) All the
links have associated weight equal to one except for the link in black having
associated weight 2 and the links represented as dashed arrows having associated
weight −1.

which corresponds to perturbations in the direction tangent to the synchronization manifold (3)
and as such are not relevant in determining the stability of the synchronous solution. Thus, a
necessary and sufficient condition for synchronization is that the Lyapunov exponents associated
with equation (10) are negative for k = 1, 2, . . . , (N − 1).

We now introduce a parametric equation

η̇(t) = DF(xs(t))η(t) + y DG(xs(t − τg))η(t − τg) + zDH(xs(t − τh))η(t − τh), (12)

where y and z are two complex parameters. We associate an MSF with equation (12),

M(y, z), (13)

which returns the maximum Lyapunov exponent of equation (12) as a function of the pair of
complex arguments (y, z). Then given any hypernetwork (2), the stability of the synchronous
solution can be evaluated by checking that M(y, z) < 0, for (y, z) = (σ AλA

k , σ BλB
k ), k =

1, 2, . . . , (N − 1). Alternatively, a necessary and sufficient condition for stability of the
synchronized evolution is that the pairs (σ AλA

k , σ BλB
k ), k = 1, 2, . . . , (N − 1) fall in the region

of the domain of the MSFM(y, z) for whichM< 0. A similar result for the case of a single
network whose topology is allowed to evolve in time has been obtained previously in [43].

However, we note that the case when the two matrices L A and L B commute is quite
specific and not very likely to occur in practical situations. An example of two graphs with
associated commuting Laplacian matrices is shown in figure 1. In sections 2.2 and 2.3, we
present two examples for which a reduction of the stability problem (7) in a low-dimensional
form is possible, even if the two matrices L A and L B do not commute.

2.2. The case when one of the two networks is unweighted and fully connected

We consider the case when one of the two networks is unweighted and fully connected. Without
loss of generality we take this matrix to be A,

Ai j =

{
1, for i, j = 1, . . . , N , j 6= i .
0, for i = j .

(14)

Then L A
i j = (1 − δi j N ), where δi j is the Kronecker delta. An example of such a hypernetwork is

shown in figure 2.
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Figure 2. A hypernetwork made up of a fully connected graph (thin black arrows)
and a superimposed network of nine directed links (thick gray arrows). All the
links (those associated with either one of the networks) have associated weight
equal to one.

We consider again the stability of the synchronous solution (3). In what follows, we obtain
an MSF by only diagonalizing the (N − 1)-dimensional subspace of transverse perturbations
without worrying about the fact that these may couple into the remaining direction (which is
tangent to the synchronization manifold).

The matrix L A can be diagonalized as L A
= V 3AV −1, where 3A is the following diagonal

matrix:

3A
= {3A

i j} =


−N 0 0 · · · 0

0 −N 0 · · · 0
. . .

0 0 · · · −N 0
0 0 0 0 0

 .

We now look at equation (9). It can be shown that the matrix 4 = V −1L B V , 4 = {4i j},
has the form

4 =


411 412 · · · 41(N−1) 0
421 422 · · · 42(N−1) 0

...

4(N−1)1 4(N−1)2 · · · 4(N−1)(N−1) 0
4N1 4N2 · · · 4N (N−1) 0

 . (15)

In fact, the matrix L B V has a column whose elements are all zero. This is because of the
properties (i) that the sum of the elements in each row of the matrix L B is equal to zero and
(ii) that the matrix V has a column (the same column where the eigenvalue 0 of 3A is) whose
elements are all the same. It immediately follows that V −1L B V has a column whose elements
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are all zero. Therefore, equation (9) can be re-expressed as

η̇′(t) = IN−1 ⊗ DF(xs(t))η
′(t) − σ A N IN−1 ⊗ DG(xs(t − τg))η

′(t − τg)

+σ B4′
⊗ DH(xs(t − τh))η

′(t − τh), (16)

η̇N (t) = DF(xs(t))ηN (t) − σ B DH(xs(t))
N−1∑
j=1

4N jη j(t − τh), (17)

where the vector η′
= [ηT

1 , ηT
2 , . . . , ηT

N−1]T and 4′ is the (N − 1)-dimensional square matrix,

4′
= {4′

i j} =


411 412 · · · 41(N−1)

421 422 · · · 42(N−1)

...

4(N−1)1 4(N−1)2 · · · 4(N−1)(N−1)

 .

We note that equation (16) is independent of equation (17). Hence, we term the first as the
drive system and the second as the response system. Note that η′ corresponds to perturbations
transverse to the synchronization manifold, whereas ηN corresponds to perturbations within the
synchronization manifold. Thus synchronization stability is governed by equation (16), which
does not involve ηN . We diagonalize the matrix 4′, obtaining (N − 1) blocks of the form

ζ̇k(t) = DF(xs(t))ζk(t) − σ A N DG(xs(t − τg))ζk(t − τg)

+σ Bνk DH(xs(t − τh))ζk(t − τh), (18)

k = 1, . . . , (N − 1), where (ν1, ν2, . . . , νN−1) are the eigenvalues of the matrix 4′. Note that
the eigenvalues of the matrix 4′ are the same as those of the matrix L B , except for the one
eigenvalue λB

N that is equal to 0.
If the (N − 1) maximum Lyapunov exponents associated with the drive system (18) are

all negative, then for large enough t , ζk(t) → 0, k = 1, . . . , (N − 1). If this happens, then
equation (17) yields for large enough t

η̇N (t) = DF(xs(t))ηN (t), (19)

which corresponds to the linearized equation in the direction tangent to the synchronization
manifold.

Thus we can introduce the parametric equation (12) into the pair (y, z), with the parameter
z being possibly complex and an MSF (13) which returns the maximum Lyapunov exponent
of equation (12) as a function of the parameters y and z. For a given hypernetwork (2), (14),
a necessary and sufficient condition for the stability of the synchronous solution (3) is that
y = −σ A N and z = σ Bνk , k = 1, 2, . . . , (N − 1), belong to the region of the domain of the
MSF (13) for whichM(y, z) < 0.

This formulation allows us to decouple the effects of the dynamical function F and the
coupling functions G and H from those of the network matrices L A and L B . In particular, for any
given triplet of functions F, G and H , the matrix B determines the parameters ν1, ν2, . . . , νN−1,
and if the MSFM(y, z) is negative for y = −σ A N and z = σ Bν1, σ

Bν2, . . . , σ
Bν(N−1), then the

synchronization manifold is stable. An interesting thing about our derivation (18) is that we have
been able to obtain a reduction of the stability problem (7) in a low-dimensional form although
the two matrices L A and L B do not necessarily commute.
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Figure 3. On the left-hand side is shown an N = 5-node network belonging to
class C, i.e. such that the entries of the associated adjacency matrix A = {Ai j}

satisfy Ai j = a j (the condition discussed in section 2.3). The width of each link
j → i represents the strength of the associated coupling Ai j . The network on the
right-hand side is an outward star graph, corresponding to satisfying (20) with
a j = 0, j = 1, . . . , (N − 1).

2.3. The case when Ai j = a j

Here we consider the case when the coupling strength from node j to node i is only a function
of the source node j and not of the destination node i , i.e.

Ai j = a j , i, j = 1, . . . , N . (20)

An example of such a network is shown on the left-hand side of figure 3, where the width of each
link j → i represents the strength of the associated coupling Ai j . The network on the right-hand
side of figure 3 is an outward star graph, corresponding to setting a j = 0 for j = 1, . . . , (N − 1)

and aN 6= 0 in equation (20). Under assumption (20), equations (1) become

ẋi(t) = F(xi(t)) + σ A
N∑

j=1

a j [G(x j(t − τg)) − G(xi(t − τg))]

+σ B
N∑

j=1

Bi j [H(x j(t − τh)) − H(xi(t − τh))], (21)

i = 1, 2, . . . , N , which can be recast in the form of equation (2), with the matrix L A
= {L A

i j}

having the form

L A
=


a1 − ā a2 · · · a(N−1) aN

a1 a2 − ā · · · a(N−1) aN
. . .

a1 a2 · · · a(N−1) − ā aN

a1 a2 · · · a(N−1) aN − ā

 , (22)

where ā =
∑N

j=1 a j . The matrix L A in (22) has the property that it has one eigenvalue λA
N =

0 with the associated eigenvector [1, 1, . . . , 1], and the remaining (N − 1) eigenvalues are
λA

1 = λA
2 = · · · = λA

(N−1) = −ā. Moreover, L A can be diagonalized as L A
= V 3AV −1 with 3A
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given by,

3A
= {3A

i j} =


−ā 0 0 · · · 0
0 −ā 0 · · · 0

. . .

0 0 · · · −ā 0
0 0 0 0 0

 .

It is easily seen that the matrix 4 is in the form (15), with the entries in the N -column being all
equal to zero. This allows us to decouple the set of linearized equations into a drive subsystem
and a response subsystem, with the response subsystem corresponding to perturbations tangent
to the synchronization manifold (3) and the drive subsystem corresponding to perturbations
transverse to the synchronization manifold.

Then following the analysis in section 2.2, it can be shown that a necessary and sufficient
condition for the stability of the synchronous solution for the hypernetwork (21) is that the
maximum Lyapunov exponent of the low-dimensional equation

θ̇k(t) = DF(xs(t))θk(t) − σ AāDG(xs(t − τg))θk(t − τg) + σ BλB
k DH(xs(t − τh))θk(t − τh)

(23)

is negative for k = 1, . . . , (N − 1), where λB
1 , λB

2 , . . . , λB
(N−1) are the eigenvalues of the matrix

L B , excluding the one eigenvalue λB
N = 0. It is then possible to associate equation (23) with the

parametric equation (12) and the MSF (13), which returns the maximum Lyapunov exponent of
equation (12) as a function of the pair of parameters (y, z), with the parameter y = −σ Aā and
the (possibly complex) parameter z = σ BλB

1 , σ BλB
2 , . . . , σ BλB

(N−1). Again we note that we have
been able to obtain a reduction of the stability problem (7) into an MSF form although the two
matrices L A and L B do not necessarily commute.

We wish to emphasize that the case in section 2.2 (fully connected network) can be seen as
a subcase of that in section 2.3 (Ai j = a j ). In fact, if we assume a j = a, j = 1, . . . , N in (20),
then the Laplacian matrix L A

= {L A
i j} in (22) is such that L A

i j = a(1 − δi j N ), i.e. it coincides
with the matrix L A considered in section 2.2 up to a multiplicative factor a.

2.4. Necessary conditions on the matrix A

We observe here that there is a substantial difference between the conditions on the adjacency
matrices A and B (the Laplacian matrices L A and L B) discussed in section 2.1 and those
discussed in sections 2.2 and 2.3. First consider the case presented in section 2.1, that the two
Laplacian matrices L A and L B commute; then, if one of the two matrices changes, there is no
guarantee that the condition would still hold. On the other hand, the conditions discussed in
sections 2.2 and 2.3 refer essentially to one of the two matrices, allowing the other one to be
freely chosen.

In sections 2.2 and 2.3, we have found sufficient conditions on one of the two adjacency
matrices, say A, that if satisfied allow a reduction of the stability problem into a low-dimensional
form, irrespective of the other adjacency matrix, say B. In this section, we are interested in
finding the necessary condition for this to happen. We consider the set of equations (1) and
we define the class C of all the networks A that satisfy the property of allowing a reduction of
the stability problem into a low-dimensional form, irrespective of the other network B. In what
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follows, we show that a network in C is such that the entries of the associated adjacency matrix
A = {Ai j} satisfy Ai j = a j , i.e. the same condition as discussed in section 2.3.

Hereafter, we try to find the conditions for an adjacency matrix A (a Laplacian matrix L A)
to be in C. Based on our previous discussion in sections 2.2 and 2.3, we see that the properties
that the matrix L A has to satisfy are the following:

(A) L A is diagonalizable.

(B) The sums of the elements in the rows of the matrix L A are equal to zero. This also
implies that the matrix L A has one eigenvalue equal to zero, with the associated eigenvector
[1, 1, . . . , 1].

(C) The remaining (N − 1) eigenvalues are all the same.

If the three properties above are satisfied, the matrix L A can always be written as follows:

L A
= W PW −1, (24)

where the matrix P is a diagonal matrix with all the entries on the main diagonal being equal to
the same value, say p, except one entry (which, without loss of generality, we assume to be the
one in the rightmost column) that is equal to zero. The matrix W is any invertible matrix with
the rightmost column being equal to the vector [1, 1, . . . , 1]. We note that the matrix P can be
rewritten as P = p(IN − I ∗

N ), where IN is the identity matrix and I ∗

N is a diagonal matrix with
all the entries on the main diagonal being equal to zero except the one in the rightmost column
being equal to one. It follows that

L A
= p(I − W I ∗

N W −1). (25)

It is easily seen that the matrix W I ∗

N W −1 is by construction such that the entries in each one of
its columns are the same. Hence, the corresponding adjacency matrices A have to be in the form
Ai j = a j , discussed in section 2.3.

We conclude that if we are given a specific adjacency matrix B (a specific Laplacian matrix
L B), there are two possible choices of the adjacency matrix A (the Laplacian matrix L A) for
which the stability problem can be reduced into a low-dimensional form: (i) L A commutes with
L B and (ii) A belongs to C, i.e. its entries are such that Ai j = a j . Note that condition (ii) is
independent of the choice of the matrix L B .

3. Examples

3.1. Example 1: coordinated motion of swarms of particles

Swarms of birds, hordes of insects, shoals of fish and colonies of ants have been modeled as
systems of interacting self-propelled particles [23, 44, 45]. Here we consider a simple model
of N particles moving along a fixed direction, say y, through a resistent fluid. The position
(velocity) of particle i along the y-direction is labeled as yi(t) (vi(t)), i = 1, . . . , N . We consider
the following equations of motion:

ẏi(t) = vr
i (t), (26a)

v̇i(t) = (α − βvr
i (t)

2)vr
i (t) +

∑
j

m j(y j(t) − yi(t)) +
∑

j

m j ci j(t)(v j(t) − vi(t)), (26b)
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i = 1, . . . , N . The first term on the right-hand side of equation (26b) represents
propulsion/friction of particle i , vr

i (t) is the relative velocity along y with respect to the resistent
fluid of particle i , vr

i (t) = (vi(t) − v f (t)) and v f (t) is the velocity of the resistent fluid, which
we model as an external input and we assume to be uniform in space. The second term on the
right-hand side of equation (26b) represents attraction from particle j on particle i . The third
term on the right-hand side of equation (26b) models a relative velocity adjustment between
particles. m j > 0 is the mass of particle j = 1, . . . , N , α, β > 0, ci j(t) measures the strength
of the interaction from particle j on particle i , which we set to be a function of the physical
distance between particles i and j ,

ci j(t) = [d2
i j + (y j(t) − yi(t))

2]e, (27)

where di j is the distance between particles i and j in the plane orthogonal to the y-direction
and the exponent e determines the strength of the interaction as a function of the distance. An
analogous model for particles that are allowed to move in the three-dimensional space has been
considered in [46].

We note that the system of equations (26) admits a synchronous solution y1(t) = y2(t) =

· · · = yN (t) = ys(t), v1(t) = v2(t) = · · · = vN (t) = vs(t), obeying

ẏs(t) = vs(t), (28a)

v̇s(t) = [α − β(vs(t) − v f (t))2](vs(t) − v f (t)), (28b)

where again v f (t) is an external input. The synchronous solution corresponds to a configuration
in which all the positions and velocities of the particles along the y-direction are the same. We
are interested in studying the stability of this solution. In order to do that, we linearize equation
(26) about (28),

δ ẏi(t) = δvi(t), (29a)

δv̇i(t) = [α − 3β(vs(t) − v f (t))2]δvi(t) +
∑

j

m j(δy j(t) − δyi(t))

+
∑

j

m j(di j)
2e(δv j(t) − δvi(t)), (29b)

i = 1, . . . , N . Equations (29) can be rewritten in matrix form,

δ ẋi(t) =

(
0 1
0 [α − 3β(vs(t) − v f (t))2]

)
δxi(t) +

(
1
0

) ∑
j

Ai j [δx j(t) − δxi(t)]

+

(
0
1

) ∑
j

Bi j [δx j(t) − δxi(t)], (30)

where

δxi(t) =

(
δyi(t)
δzi(t))

)
, (31)

and Ai j = m j , Bi j = m j(di j)
2e, i, j = 1, . . . , N . It is easily seen that the matrix A = {Ai j}

belongs to class C. Hence, following section 2.3, the stability problem can be reduced into a
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low-dimensional form analogous to equation (23),

θ̇k(t) =

(
−ā 1
0 [α − 3β(vs(t) − v f (t))2] + λB

k

)
θk(t), (32)

where k = 1, . . . , (N − 1). Note that ā =
∑N

j=1 m j > 0. Thus a necessary and sufficient
condition for the synchronous solution to be stable is that 〈(vs(t) − v f (t))2

〉t > (α + λB
k )/(3β),

k = 1, . . . , (N − 1), where again we have used the symbol 〈· · · 〉t to indicate the time average.

3.2. Example 2: synchronized chaotic motion

In what follows, we consider a hypernetwork that allows a chaotic synchronous evolution (4).
We choose n = 3,

F(x) =

 −x2 − x3

x1 + 0.2x2

0.2 + (x1 − 7)x3

 (33)

is the equation of the chaotic Rössler oscillator, G(x(t)) = [x1(t), 0, 0]T and H(x(t)) =

[0, x2(t), 0]T, τg = τh = 0. The stability of the synchronous solution for networks of coupled
Rössler oscillators coupled via different coupling functions has been widely investigated in
the literature; see, e.g., [18]. While it is known that this problem allows a low-dimensional
reduction, the case of dynamical hypernetworks has not been considered. In what follows, we
show that under specific conditions, a low-dimensional analysis can still be applied and based
on this approach, we derive new conditions for the stability of the synchronous solution. We
numerically compute the MSFM(y, z) associated with equation (12) for the case when y and
z are real numbers.

Figure 4 shows the results of our computations with the gray (white) area indicating a
negative (positive) MSF. We wish to emphasize that once the MSF has been computed for a
given triplet F , G and H (as shown in figure 4), we are able to predict the stability of the
synchronous solution for any hypernetwork (2), corresponding to either one of the three cases
presented in sections 2.1–2.3.

We define the average synchronization error E ,

E = (Nn)−1
N∑

i=1

n∑
`=1

ρ`〈xi`(t) − x̄i`(t)|〉t , (34)

where x̄i`(t) = N−1
∑N

i=1 xi`(t), ρ` = 〈(xs` − 〈xs`〉)
2
〉

1/2, 〈· · · 〉t indicates a time average and
xs = (x1s, x2s, x3s)

T denotes the dynamics of an uncoupled system (i.e. using dynamics from
equation (4)).

We consider the hypernetwork shown in figure 2. We assume that the matrix A is associated
with the fully connected network (whose connections are represented as thin black arrows
in the figure) and that the matrix B is associated with the superimposed graph (in gray in
the figure), i.e. the entries of the matrix B are Bi j = 1 if there is a direct arrow from node
j to node i in the figure and Bi j = 0 otherwise. Then we have that the eigenvalues of the
matrix L B are {−3, −2.618, −2, −1, −0.382, 0}; note that they are all real and less than or
equal to zero. In general, in order to verify stability, it is necessary to check that all the
pairs (y, z) = (σ AλA

k , σ BλB
k ), k = 1, 2, . . . , (N − 1), follow into the domain of the MSF for
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Figure 4. Sign of the MSF M(y, z) for a network of Rössler systems (33),
G(x(t)) = [x1(t), 0, 0]T and H(x(t)) = [0, x2(t), 0]T. The gray (white) area
indicates a negative (positive) maximum Lyapunov exponent.

which M(y, z) < 0. This can be done, for example, by superimposing the (N − 1) points
corresponding to all the pairs (σ AλA

k , σ BλB
k ) to figure 4; if all the points falls into the gray area,

this ensures stability (sufficient condition for synchronization) and if only one of the points fall
into the white area, this corresponds to instability (necessary condition for synchronization).
However, for the network of figure 2 and the MSF of figure 4, we note that for any fixed value
of y = −σ A N , the condition for stability is that

σ BλB
i < κ, i = 1, . . . , (N − 1), (35)

where the parameter κ is the abscissa of the intersection of the y = −σ A N line with the right
profile of the gray area shown in figure 3. Note that κ can be either positive or negative.
We define λB

max = max (λB
1 , λB

2 , . . . , λB
(N−1)) and λB

min = min (λB
1 , λB

2 , . . . , λB
(N−1)). Then, for this

case, the stability of the synchronous solution can be assessed by testing the following simple
condition:

σ BλB
max < κ if κ < 0, (36a)

σ BλB
min < κ if κ > 0. (36b)

In figure 5, we consider the following three cases: σ A
= 4.5/6, σ A

= 5.5/6 and σ A
=

2/3 (corresponding, respectively, to y = −4.5, y = −5.5 and y = −4). As can be seen from
figure 5(b), for the first two cases, κ < 0, whereas for the latter case κ > 0. We integrate
equations (2) and (33) with G(x(t)) = [x1(t), 0, 0]T and H(x(t)) = [0, x2(t), 0]T for a long
time and record the average synchronization error E . As can be seen from figures 5(a)–(c),
E approaches zero iff σ BλB

max < κ when σ A
= 4.5/6 and σ A

= 5.5/6 (σ BλB
min < κ when σ A

=

2/3), thus confirming the MSF predictions.
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Figure 5. (b) Panel shows the intersections of the right profile of the stability area
of figure 4 and the lines y = −4, y = −4.5 and y = −5.5. Panels (a), (c) show
the results of numerical simulations for which we have integrated equations (2)
and (33) with G(x(t)) = [x1(t), 0, 0]T and H(x(t)) = [0, x2(t), 0]T for a long
time and recorded the average synchronization error E .

4. Generalization to m networks

In this section, we consider the synchronization of a hypernetwork made up of m > 2 distinct
networks. For this case, we rewrite equation (2) as follows:

ẋi(t) = F(xi(t)) +
m∑

k=1

σ k
N∑

j=1

Lk
i j G

k(x j(t − τ k)), (37)

i = 1, 2, . . . , N , where Gk : Rn
→ Rn is the coupling function associated with the connections

of network k, Lk
= {Lk

i j} is the Laplacian matrix associated with network k, σ k is a scalar
measuring the overall coupling strength for network k, k = 1, . . . , m. In what follows, we will
generalize the main results of section 2 to this more general case (equation (37)). The delays τ k

may be possibly different, i.e. τi 6= τ j , i, j = 1, . . . , m, i 6= j . The nN dimensional state space
of the system described by equations (37) contains the n-dimensional synchronization manifold
I, defined by equation (3). Note that if a solution belongs to I over a time interval [t0, t0 + τmax],
where τmax = maxi τ i , then the solution will belong to I, for any time t > t0 + τmax. In this case,
the synchronized solutions x1(t) = x2(t) = · · · = xN (t) = xs(t) are characterized by the same
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dynamics as that of an uncoupled system (4). In what follows, we are interested in evaluating
the stability of the synchronization manifold I.

As a first case, we consider that the matrices {Lk
}, k = 1, . . . , m, all commute with each

other, i.e. they all share the same set of linearly independent eigenvectors. Then, similar to
section 2.1, it can be shown that the stability of the synchronous solution can be reduced to the
following low-dimensional form:

η̇l(t) = DF(xs(t))ηl(t) +
m∑

k=1

σ kλk
l DGk(xs(t − τ k))ηl(t − τ k), (38)

l = 1, . . . , N , where {λk
l } is the set of (complex) eigenvalues of the matrices {Lk

}, which
are associated with the same eigenvectors, i.e. such that Lkvl = λk

l vl , k = 1, . . . , m and l =

1, . . . , N . Recall that for any k = 1, . . . , m, the eigenvalue λk
N = 0, and the corresponding

eigenvector is [1, 1 . . . 1]. Hence, for k = N , equation (38) yields equation (11) which
corresponds to perturbations in the direction tangent to the synchronization manifold (3) and
as such are not relevant in determining the stability of the synchronous solution. Thus a
necessary and sufficient condition for synchronization is that the Lyapunov exponents associated
with equation (38) are negative for k = 1, 2, . . . , (N − 1). It is then possible to associate the
following MSF with equation (38):

M(y1, y2, . . . , ym), (39)

which returns the maximum Lyapunov exponent of the system (38) for yk
= σ kλk

l . A necessary
and sufficient condition for stability is thatM(y1, y2, . . . , ym) < 0 for l = 1, . . . , (N − 1).

We now attempt to generalize the result of section 2.3 to a hypernetwork made up of m
networks. We assume that the first (m − 1) networks, k = 1, . . . , (m − 1), belong to C, while
the remaining network, k = m, is arbitrary. Under these assumptions the first (m − 1) Laplacian
networks are in the following form:

Lk
=


ak

1 − āk ak
2 · · · ak

(N−1) ak
N

ak
1 ak

2 − āk
· · · ak

(N−1) ak
N

. . .

ak
1 ak

2 · · · ak
(N−1) − āk ak

N

ak
1 ak

2 · · · ak
(N−1) ak

N − āk

 , (40)

where āk
=

∑N
j=1 ak

j , k = 1, . . . , (m − 1). Note that two matrices in C, i.e. having the form (40),
do not necessarily commute. Each matrix Lk in (40) has the property that it has one eigenvalue
λk

N = 0 with the associated eigenvector [1, 1, . . . , 1] and the remaining (N − 1) eigenvalues are
λk

1 = λk
2 = · · · = λk

(N−1) = −āk , k = 1, . . . , (m − 1).
The eigenvectors of any of these matrices can be used as a new basis, say we choose

k = 1, L1
= V 31 V −1. Then it is easy to see that all the matrices V −13k V , for k = 2, . . . , m,

are in the form (15). It follows (similarly to section 2.3) that we can decouple the set
of linearized equations in a drive subsystem and a response subsystem, with the response
subsystem corresponding to perturbations tangent to the synchronization manifold (3) and the
drive subsystem corresponding to perturbations transverse to the synchronization manifold.
Moreover, it can be shown that a necessary and sufficient condition for the stability of the
synchronous solution for the hypernetwork (21) is that the maximum Lyapunov exponent of the
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low-dimensional equation

η̇l(t) = DF(xs(t))ηl(t) −

m−1∑
k=1

σ k āk DGk(xs(t − τ k))ηl(t − τ k)

+σ mλm
l DGm(xs(t − τm))ηl(t − τm) (41)

is negative for l = 1, . . . , (N − 1), where λm
1 , λm

2 , . . . , λm
(N−1) are eigenvalues of the matrix Lm ,

excluding the one eigenvalue λm
N = 0. A necessary and sufficient condition for stability is that

the MSF (39) is negative for l = 1, . . . , (N − 1), where yk
= −σ k āk , k = 1, . . . , (m − 1) and

ym
= σ mλm

l , l = 1, . . . , (N − 1).
Finally, we consider the more general case when m ′ < m networks of the hypernetwork

(37) belong to C and the remaining (m − m ′) Laplacian matrices commute with each other.
Without loss of generality, we assume that the first m ′ networks in (37) are in C, k = 1, . . . , m ′,
and that the remaining (m − m ′) Laplacian matrices Lk commute with each other, k = (m ′ + 1),

. . . , m. We observe that a reduction of the synchronization stability problem in a low-
dimensional form is possible,

η̇l(t) = DF(xs(t))ηl(t) −

m′∑
k=1

σ k āk DGk(xs(t − τ k))ηl(t − τ k)

+
m∑

k=(m′+1)

σ kλk
l DGk(xs(t − τ k))ηl(t − τ k), (42)

l = 1, . . . , N , where λk
1, λ

k
2, . . . , λ

k
(N−1) are the eigenvalues of the matrix Lk , k = (m ′ +

1), . . . , m, which are associated with the same eigenvectors, i.e. such that Lkvl = λk
l vl , k =

(m ′ + 1), . . . , m, and the stability of the low-dimensional equation can be associated with the
MSF (39), where

yk
=

{
−σ k āk, k = 1, . . . , m ′,
σ kλk

l , k = (m ′ + 1), . . . , m,
(43)

l = 1, . . . , (N − 1). The eigenvalue λm′+1
N = · · · = λm

N = 0, with the associated eigenvector
[1, . . . , 1]T, represents perturbations tangent to the synchronization manifold and as such is
not relevant in determining the stability of the synchronous solution.

5. Stability analysis for a more general class of hypernetworks

In this section, we consider hypernetworks of coupled systems, which cannot be cast into the
specific form of equations (1). We will show that under appropriate conditions, the master
stability reduction studied in section 2 can be extended to study synchronization for this
more general class of hypernetworks. In particular, we focus on synchronization of neuronal
networks. Global synchronization of large areas of the brain is usually associated with the onset
of a pathological condition, such as Parkinson’s disease or epilepsy [47].

We study a hypernetwork of neurons coupled through both chemical synapses and
electrical gap junctions. Such neuronal networks of different types connecting the same set
of neurons have recently been explicitly discussed in the context of the C. elegans nervous
system, which has both a gap junctional network and a chemical synaptic network [48, 49].
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Following [20, 21, 50], a neuronal hypernetwork with these characteristics can be described by
the following system of differential equations:

ẋi(t) = F(xi(t)) +
σ A

k A
i

(E j − ς T xi(t))
N∑

j=1

Ai j si j(t)ς +
σ B

k B
i

N∑
j=1

Bi j0[x j(t) − xi(t)], (44)

where the n-dimensional vector xi(t) = [x1
i (t), x2

i (t), . . . , xn
i (t)] is the state of neuron i , with

the first variable x1
i (t) representing its membrane potential, F : Rn

→ Rn defines the dynamics
of an uncoupled neuron, the coupling matrix A = {Ai j} specifies the connection topology of
the network of chemical synapses j → i , while the coupling matrix B = {Bi j} specifies the
connection topology of the network made up of electrical gap junctions j ↔ i , k A

i =
∑

j Ai j ,
k B

i =
∑

j Bi j , σ A and σ B are two scalar coefficients and E j is the synaptic reverse potential
of neuron j . Note that the matrix A (B) is assumed to be asymmetrical (symmetrical). The
n-matrix

0 =


1 0 · · · 0
0 0 · · · 0

. . .

0 0 0 0


specifies the form of the coupling, indicating that neurons are coupled through their membrane
potentials, the n-vector 1 = [1, 0, . . . , 0]T has a similar function, i.e., selecting the first state
variable x1

i of the state vector xi ; 0 ≡ 11T. The dynamical variables si j(t) represent how strongly
cell j is connected to cell i and obey the following differential equation [50],

ṡi j(t) = −c1si j(t) + c2(1 − si j(t))S(ςTx j(t − τ)), (45)

i, j = 1, . . . , N , where τ is the interaction delay associated with synaptic coupling (due to
axonal conduction and synaptic processes), c1, c2 > 0 are two scalar coefficients, S : R → R
is a sigmoidal function, which we set

S(ςTx j(t − τ)) = 1 + tanh((ςTx j(t − τ) − vth)/vsl), (46)

where v−1
sl represents the slope of the function S when its argument is small and vth is the firing

threshold. As can be seen from (44), the individual neurons may simultaneously interact through
two distinct networks, i.e. the network A made up of chemical synapses and the network B made
up of electrical gap junctions.

The condition for the set of equations (44) to admit a synchronous solution

x1(t) = x2(t) = · · · = xN (t) = xs(t), (47a)

s11(t) = s12(t) = · · · = sN N (t) = ss(t) (47b)

is that E1 = E2 = · · · = EN = Es . If this condition is satisfied, the synchronous solution xs(t)
obeys

ẋs(t) = F(xs(t)) + σ A(Es − ςTxs(t))ss(t)ς, (48a)

ṡs(t) = −c1ss(t) + c2(1 − ss(t))[1 + tanh((ςTxs(t − τ) − vth)/vsl)]. (48b)

Note that differently from the case considered in sections 1–3, the synchronous solution (47)
does not obey the same equation as that of an isolated system. Our goal in this section is to study
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the stability of the synchronous solution (47) for the hypernetwork (44). In order to do that, we
linearize the set of equations (44) about (47), obtaining

δ ẋi(t) = [DF(xs(t)) − σ A0ss(t)]δxi(t) + σ Aς(Es − ςTxs(t))
N∑

j=1

A′

i jδsi j(t)

+σ B
N∑

j=1

B ′

i j0[δx j(t) − δxi(t)], (49a)

δṡi j(t) = −c1δsi j(t) − c2S(ςTxs(t − τ))δsi j(t) + c2(1 − ss(t))DS(ςTxs(t − τ))ςTδx j(t − τ),

(49b)

where the matrices A′
= {A′

i j} and B ′
= {B ′

i j} are such that A′

i j = (k A
i )−1 Ai j and B ′

i j = (k B
i )−1 Bi j

and we have used the properties that
∑

j A′

i j = 1 and
∑

j B ′

i j = 1. We introduce the perturbation
δσi(t) =

∑
j A′

i jδσi j(t), i = 1, . . . , N . By multiplying (49b) by A′

i j and summing over j , we can
rewrite (49) as

δ ẋi(t) = [DF(xs(t)) − σ A0ss(t)]δxi(t) + σ Aς(Es − ςTxs(t))δsi(t)

+σ B
N∑

j=1

B ′

i j0[δx j(t) − δxi(t)], (50a)

δṡi(t) = −c1δsi(t) − c2S(ςTxs(t − τ))δsi(t)

+c2(1 − ss(t))DS(ςTxs(t − τ))ςT
∑

j

A′

i jδx j(t − τ), (50b)

We can now introduce the (n + 1)-vectors δ x̃i(t) = [δxi(t)T, δsi(t)]T, i = 1, . . . , N and the
(N (n + 1))-vector δ x̃(t) = [δ x̃1(t)T, δ x̃2(t)T, . . . , δ x̃N (t)T]T. Then, following section 2, we can
rewrite the set of equations (49) in vectorial form as follows,

δ ˙̃x(t) = IN ⊗ [DF̃1(xs(t), xs(t − τ), ss(t))]δ x̃(t) + A′
⊗ DF̃2(xs(t − τ), ss(t)))δ x̃(t − τ)

+σ B L B ′
⊗ 0̃δ x̃(t),

(51)

where the Laplacian matrix L B ′

= {L B ′

i j } = {B ′

i j − δi j} and the (n + 1)-square matrices

DF̃1(xs(t), xs(t − τ), ss(t)) =

[
DF(xs(t)) − σ A0ss(t) +σ Aς(Es − ςTxs(t))

0 −c1 − c2S(ςTxs(t − τ))

]
, (52)

DF̃2(xs(t − τ), ss(t)) =

[
0 0

ςTc2(1 − ss(t))DS(ςTxs(t − τ)) 0

]
, (53)

0̃ =

[
0 0
0 0

]
. (54)

As can be seen, the structure of the linearized equations (51) is quite similar to that of
equation (8) in section 2. The main difference to equation (8) is that in the case above, one of
the two coupling matrices, namely A′, is not a Laplacian matrix, as the entries along each row
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of the matrix A′ sum to one and not to zero. We now wonder whether the stability problem (51)
can be reduced to a low-dimensional form. As for the case of equation (8), the main difficulty
is that in general it is impossible to decouple equation (51) in N independent blocks. One
possibility, which we do not give further consideration in what follows, is that the two matrices
A′ and L B ′

commute. Another possibility is that the matrix L B ′

belongs to class C. If this is the
case, then the matrix L B ′

can be diagonalized as in equation (24), i.e. L B ′

= W (I ∗

N − IN )W −1,
where the matrix W is an invertible matrix with the rightmost column being equal to the vector
[1, 1, . . . , 1] and I ∗

N is a diagonal matrix with all the entries on the main diagonal being equal
to zero except the one in the rightmost column being equal to one (see section 2.4). Under these
assumptions, the matrix 4 = W −1 A′W has the form

4 =


411 412 · · · 41(N−1) 0
421 422 · · · 42(N−1) 0

...

4(N−1)1 4(N−1)2 · · · 4(N−1)(N−1) 0
4N1 4N2 · · · 4N (N−1) 1

 , (55)

from which we see that similarly to section 2.3, the linearized problem (51) can be decoupled
into a drive subsystem and a response subsystem, with the response subsystem corresponding
to perturbations tangent to the synchronization manifold (47) and the drive subsystem
corresponding to perturbations transverse to the synchronization manifold.

It is known from the literature that in the visual cortex [51] and in the posterior part of the
putamen [52], small groups of neurons are likely to form dense and uniform clusters of gap-
junctions. Hence, assuming that the network L B ′

is of class C can be appropriate to model such
agglomerates of neurons or small subsets of them. Therefore, as an example, we consider a
small group of N neurons connected by a dense L B ′

network of gap junctions, with L B ′
∈ C.

Under these assumptions, by diagonalizing the (N − 1)-dimensional subspace of transverse
perturbations (see section 2), the high-dimensional problem (49) can be reduced to the low-
dimensional form,

ϑ̇(t) = [DF̃1(xs(t), xs(t − τ), ss(t)) − σ B0̃]ϑ(t) + λA ′

k DF̃2(xs(t − τ), ss(t)))ϑ(t − τ), (56)

k = 1, 2, . . . , (N − 1), where {λA′

k }, k = 1, . . . , N , are the eigenvalues of the matrix A′. By
construction, the matrix A′ has one eigenvalue, λA′

N = 1, with the associated eigenvector
[1, 1, . . . , 1]. This eigenvector represents perturbations that are tangent to the synchronous
solution; hence, it is not relevant in determining the stability of the synchronous solution (47).

In the more general case in which L B ′

does not belong to class C and the two matrices
L B ′

and A′ do not commute, the stability of the synchronous solution results in a much more
complex problem, for which (49) cannot be reduced to a low-dimensional form and we expect
a higher degree of complexity. The study of this case is beyond the scope of this paper.

We run numerical simulations in which each individual system is described by the
FitzHugh–Nagumo model, n = 2,

F(x) =

[
10[x1(x1 − 0.1)(1 − x1) − x2 + 0.2]

x1 − 0.5x2

]
(57)

and we set vth = 0.3, vsl = 10−2, c1 = c2 = 10, Es = 1, σ A
= 1, τ = 1. In figure 6(a), we plot

the time evolution of the synchronous evolution, obtained by integrating equation (48) for this
particular choice of the function F in (57) and of the parameters. We further set σ B

= 0.9 and
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Figure 6. (a) Time evolution of the synchronized solution for the system (44),
obtained by numerically integrating equations (48) and (57) with vth = 0.3,
vsl = 10−2, c1 = c2 = 10, E1 = E2 = · · · = EN = Es = 1, σ A

= 1, τ = 1. x1
s (t)

is plotted in black and ss(t) is plotted in gray. (b) Plot of the MSF corresponding
to the low-dimensional system (56) versus the parameter λA′

for the case when
λA′

is real. The parameters are the same as in (a), σ B
= 0.9.

calculate the maximum Lyapunov exponent associated with the low-dimensional system (56)
as a function of the parameter λA′

. This corresponds to an MSF, which is plotted in figure 6(b)
for the case when its argument is real. As can be seen from figure 6(b), the MSF curve crosses
the 0-ordinate line at two distinct values of the abscissa, which we found to be approximately
equal to −0.74 and 1.1 (in the figure, the 0-ordinate and the 1-abscissa lines are plotted as
dashed lines). Thus a necessary and sufficient condition for the stability of the synchronous
solution is that −0.746 λA′

i 6 1.1, i = 1, . . . , (N − 1). If we assume that A′

i j > 0, we have by
the Perron–Frobenius theorem that |λA′

i |6 1, i = 1, . . . , N , where 1 is the Perron–Frobenius
eigenvalue of the matrix A′, and the necessary and sufficient condition for stability reduces to
−0.746 λA ′

min, where λA ′

min = mini=1,...,(N−1) λ
A ′

i .
We finally run simulations of the full nonlinear hypernetwork described by

equations (44), (45) and (57). We set the initial conditions for x1
i and x2

i , i = 1, . . . , N , and
for si j , i, j = 1, . . . , N , to be random numbers drawn from a uniform distribution in the range
(0, 0.2). We consider that the network of chemical synapses is the network of N = 6 nodes and
9 directed links represented in gray in figure 2, i.e. the entries of the matrix A are Ai j = 1
if there is a gray direct arrow from node j to node i in the figure and Ai j = 0 otherwise.
The spectrum of the corresponding matrix A′ is real and λA ′

min = −
√

2/2 > −0.74. We set
the network of chemical synapses to be such that Bi j = b j = j , i, j = 1, . . . , 6 (note that the
particular choice of the values of b j , j = 1, . . . , N , affects neither the spectrum of the matrix L B ′

nor the low-dimensional equation (56)). We evolve the hypernetwork (44), (45), (57) from t = 0

New Journal of Physics 14 (2012) 033035 (http://www.njp.org/)

http://www.njp.org/


22

to t = 500. We monitor the quantity E(t), defined in equation (34). As expected, we observe
that after a transient, E(t) → 0. We repeat the same experiment for the case when Ai j = 1 if
|i − j | = 1 and Ai j = 0 otherwise. For this case, the spectrum of the corresponding matrix A′ is
real but λA ′

min = −1 < −0.74, thus predicting that the synchronous solution is unstable. This is
confirmed by our numerical experiments, showing that when the full nonlinear system (44), (45)
and (57) is integrated from initial conditions that are close to the synchronous state (48), E(t)
does not converge to 0.

6. Conclusion and discussion

In this paper, we have studied synchronization of coupled dynamical systems when different
types of interactions are simultaneously present. Our study applies to any situation where
the individual units interact through different coupling mechanisms. For example, neurons
in the brain are known to be connected through both electrical gap junctions and chemical
synapses, [20, 21, 48, 49]. Also, our study encompasses a situation where different coupling
functions correspond to different interaction delays.

In our formulation, a set of identical dynamical systems are coupled through the
connections of two or more distinct networks (each of which corresponds to a distinct coupling
function) and we refer to such a system as a dynamical hypernetwork. We first focus on the case
of a hypernetwork made up of m = 2 networks and we seek to obtain necessary and sufficient
conditions for synchronization. In section 2, we try to reduce the stability problem to an MSF
form. Although a solution in this form seems to be not available in general, we show that such
a reduction is possible in three cases of interest: (i) the Laplacian matrices associated with the
two networks commute; (ii) one of the two networks is unweighted and fully connected; (iii)
one of the two networks is such that the coupling strength from node j to node i is a function of
j but not of i , with case (ii) being a subcase of (iii). We introduce a unique MSF that determines
stability for all three cases. Also, we define the class C of networks for which the reduction is
always possible, independent of the structure of the other network.

We note that in many situations, such as, e.g., in biological networks, different types
of interactions are typically present, but the couplings may vary in time due to changing
environmental conditions, making satisfaction of any one of the conditions (i), (ii) and (iii)
difficult. On the one hand, this highlights a limitation of the MSF approach that does not seem
to be applicable to situations of arbitrary complexity (see also, e.g., [17]). On the other hand,
it poses the fascinating challenge of defining alternative tools to addressing the stability for the
case of arbitrary hypernetworks. We also point out here that we cannot exclude the existence
of other conditions to be satisfied simultaneously by both matrices A and B (e.g. for either the
hypernetwork (1) or (44)) that allow a reduction of the stability problem to a low-dimensional
form.

In section 4, we have proposed a generalization of our stability results to hypernetworks
made up of m networks. In section 5, we have shown the possibility of generalizing our
approach to hypernetworks of coupled systems, which cannot be cast into the specific form
of equations (1). As an example of interest, we have studied the synchronization of neural
hypernetworks for which the connections can be either chemical synapses or electrical
gap junctions. The results of this paper could also be easily extended to the study of the
synchronization of dynamical hypernetworks of coupled discrete-time systems.
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Appendix. The special case of hypernetworks of N = 2 nodes

In this appendix, we show that for hypernetworks of N = 2 nodes, the stability problem
can always be reduced to a low-dimensional form. We start by considering that N is an
arbitrary number and that the hypernetwork is made up of m = 2 networks (equation (1)). The
generalization to the case of m > 2 networks is straightforward.

We look at equation (2). In general, a case of interest is that one of the two Laplacian
matrices, say L A, can be rewritten as

L A
= k1L A1 + k2L A2, (A.1)

where the matrix L A1 belongs to C (i.e. it is in the form of the matrix (22)) and the matrix
L A2 commutes with L B , that is, L A2

= V 3AV −1 and L B
= V 3B V −1, where 3A and 3B are

diagonal matrices. Under the condition (A.1), equation (8) can be rewritten as

δ ẋ(t) = IN ⊗ DF(xs(t))δx(t) + σ Ak1L A1
⊗ DG(xs(t − τg))δx(t − τg)

+σ Ak2L A2
⊗ DG(xs(t − τg))δx(t − τg) + σ B L B

⊗ DH(xs(t − τh))δx(t − τh).

(A.2)

Following section 2.3, it can be shown that a necessary and sufficient condition for the stability
of the synchronous solution for the hypernetwork (A.2) is that the maximum Lyapunov exponent
of the low-dimensional equation

θ̇k(t) = DF(xs(t))θk(t) + σ A(k2λ
A
k − k1ā)DG(xs(t − τg))θk(t − τg)

+σ BλB
k DH(xs(t − τh))θk(t − τh) (A.3)

is negative for k = 1, . . . , (N − 1), where ā =
∑N

j=1 a j , λA
k and λB

k are, respectively, the
(complex) eigenvalues of the matrices L A and L B that are associated with the same eigenvectors,
i.e. such that L Avk = λA

k vk and L Bvk = λB
k vk . Note that the eigenvalue λA

N = λB
N = 0 is not

relevant in determining stability. Now the question arises as to how likely it is that an arbitrary
Laplacian matrix L A can be decomposed into the form (A.1). In general terms, an N -squared
matrix is determined by its N 2 entries. At the same time, we are allowed 2N degrees of freedom
in the decomposition (A.1), i.e. N degrees of freedom in choosing the entries a1, a2, . . . , aN of
the C-matrix L A1 and N degrees of freedom in choosing the eigenvalues of the matrix L A2. It
follows that only in the case when N = 2 is a decomposition into the form (A.1) guaranteed
irrespective of the choice of the two Laplacian matrices L A and L B . This leads to the conclusion
that the stability of the synchronous solution for an arbitrary N = 2 hypernetwork can always
be associated with the MLE of the low-dimensional equation (A.3) for k = 1.
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