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We address the issue of how to identify the equations of a largely unknown chaotic system from
knowledge about its state evolution. The technique can be applied to the estimation of parameters
that drift slowly with time. To accomplish this, we propose an adaptive strategy that aims at
synchronizing the unknown real system with another system whose parameters are adaptively
evolved to converge on those of the real one. Our proposed strategy is tested to identify the
equations of the Lorenz and the Rössler systems. We also consider the effects of measurement noise
and of deviation of our fitting model from consistency with the true dynamics. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3186458�

In this paper, we present a new technique to estimate the
equations of an unknown chaotic system. We assume that
suitable but rather minimal information is available
about the form of the system equations and we use the
observed dynamics to estimate an approximation to the
unknown system. We envision that our findings could be
useful in situations in which the equations governing the
dynamics of a given unknown chaotic system are to be
identified or in situations where system parameters drift
with time.

I. INTRODUCTION

Systems of nonlinear differential equations are often
used to study the dynamics of real world systems. For in-
stance, the Hindmarsh–Rose equation1 is widely considered
to be a reasonable model of the firing/bursting behavior in
real neurons and has been shown to be chaotic for a certain
range of its parameters. Another example is that of the Chua
system2,3 that models the dynamics of a simple electronic
circuit for which the emergence of chaos has been observed
both in simulations and in experiments. A general question
that often arises is whether such a system of differential
equations replicates the dynamics of a given real system that
it is meant to model.

In a recent paper,4 it has been shown that it is possible to
synchronize a real experimental system with a system of dif-
ferential equations simulated on a computer by coupling the
two. This is only possible if the system simulated on the
computer does a sufficiently good job of quantitatively rep-
licating the dynamics of the experimental system.5 An inter-
esting implication of this is that it is possible to quantita-
tively evaluate the degree to which a given mathematical
model replicates the dynamics of a real system via its capa-
bility to synchronize with the real system when the two are
coupled. Here we adopt a different but related application of
synchronism of coupled chaotic systems. In particular, we
consider that the real system is largely unknown, and we

propose an adaptive strategy that, by using synchronization,
is able to obtain a set of �nonlinear� differential equations
that describes it. Furthermore, in the case that the fitting
function basis for our model is not consistent with the true
system dynamics, we will try to answer the question of how
well the obtained model is able to forecast the true system
future behavior.

References 6 and 7 have outlined the connection be-
tween the problem of synchronization of dynamical systems
and the problem of the design of an observer to reconstruct
the state of an unknown system. The idea of using synchro-
nization or control for parameter and model identification
has previously been presented in Ref. 8 and subsequently in
Refs. 9–11. Some recent papers have appeared on recon-
structing the state and parameters of the Chua system.12,13

Here we will address the issue of how to identify the equa-
tions of a largely unknown generic system from knowledge
on its state evolution. In Sec. II, the problem is introduced
and an adaptive strategy based on the minimization of appro-
priately defined potentials �see, e.g., Ref. 14� is presented. In
Sec. III, our proposed strategy is tested to identify the equa-
tions of the Rössler and the Lorenz systems. In Sec. IV, we
will take into account the effects of measurement noise. In
Sec. V, we will address the case that the fitting function basis
for our model is not consistent with the true system equa-
tions, and for this case, we will study the capability of the
obtained approximate model to forecast the evolution of the
true system.

II. FORMULATION

We consider the general example ẋ=F�x� with x
= �x1 ,x2 , . . . ,xn�T and F�x�= �f1�x� , f2�x� , . . . , fn�x��T, where

f i�x� = �
j=1

n

�
k=j

n

aijkxjxk + �
j=1

n

bijxj + ci. �1�

That is, f i�x� is a degree two polynomial. Note that the speci-
fication of F�x� from Eq. �1� involves M = ��n2+n� /2+n
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+1�n parameters. For example, in the case of the Rössler
system �to be used later in our numerical experiments�, n
=3 and

F�x� = � − x2 − x3

x1 + 0.165x2

0.2 + �x1 − 10�x3
� , �2�

and all the coefficients �aijk, bij, and ci� are zero, except for
a313=1, b12=−1, b13=−1, b21=1, b22=0.165, b33=−10, and
c3=0.2. The Lorenz system could be recast in similar terms.
The Hindmarsh–Rose system has an analogous structure but
with higher order powers of the state variables as well �one
term is third order�.

In this paper, we will be mainly concerned with the case
that the chosen form for our model system is a degree two
polynomial, which is as in Eq. �19�. Nonetheless the exten-
sion to the case of higher order polynomials or to a different
fitting function basis is straightforward.

We assume that the exact system �2� is unknown, but it
is known that the system is of the form ẋ=F�x� with x
n-dimensional and F�x� expressible, or approximately ex-
pressible in terms of degree two polynomials in x as dis-
cussed above. It is then appropriate to try to model the dy-
namics of the true system by ẋ�=F��x�� with

ẋi� = f i��x1�,x2�, . . . ,xn��

= �
j=1

n

�
k=j

n

aijk� xj�xk� + �
j=1

n

bij�xj� + ci�, i = 1, . . . ,n . �3�

Our goal is then to obtain good estimates aijk� , bij� , and ci� of
the true coefficients aijk, bij, and ci. We assume that although
F�x� is unknown, we do have access to good measurements
of the evolving “experimental” system. To accomplish our
goal, we envision coupling the true system to the model sys-
tem �3�. Our approach will be to formulate an adaptive pro-
cedure which adjusts the model coefficients aijk� , bij� , and ci� in
such a way as to achieve synchrony. It is then hoped that
when this has been accomplished, the model coefficients will
be a good approximation to the corresponding coefficients of
the real system.

We perform a one way diffusive coupling from the true
system to the model as follows:

ẋ� = F��x�� + ��H�x� − H�x��� . �4�

The quantity H is in general an m�n vector of m observable
scalar quantities that are assumed to be known functions of
the system state x�t�. � is an m�n constant coupling matrix.
For our numerical experiments we will assume that �i�
H�x�=x and �ii� �=�In, where � is a scalar quantity and In is
the identity matrix of dimension n. Note that our strategy
requires that when the system parameters are correctly iden-
tified, i.e., aijk� =aijk, bij� =bij, ci�=ci, � belongs to the range for
which the synchronized solution x�t�=x��t� is stable with
respect to infinitesimal perturbations.15

We now introduce the following potentials:

�i = ��ẋi − f i��x1�,x2�, . . . ,xn���
2	�, i = 1,2, . . . ,n , �5�

where �G�t�	� denotes the sliding exponential average

�
te−��t−t��G�t��dt�. Note that �i is a function of time
and also of the coefficients aijk� , bij� , and ci�. Also note that if
x1�t� ,x2�t� , . . . ,xn�t� are chaotic, then the quantities,
f i�x1�t� ,x2�t� , . . . ,xn�t��, i=1,2 , . . . ,n, vary chaotically as
well. Furthermore, we point out that the exponential averag-
ing operation �G�t�	� is the same as low-pass filtering of G�t�
using a first order filter of bandwidth �. The potential �5�
satisfies �i�0 and has a minimum value of zero. A suffi-
cient condition for the potentials in Eq. �5� to be zero is

xi�t� = xi��t�, i = 1,2, . . . ,n , �6�

and

aijk� = aijk, i, j = 1, . . . ,n;k = j, . . . n ,

bij� = bij, i, j = 1, . . . ,n , �7�

ci� = ci, i = 1, . . . ,n .

Equation �6� corresponds to synchronization. Equation �7�
corresponds to a correct identification of the �unknown� sys-
tem parameters. Due to the chaotic nature of the true system,
it should typically be the case that this sufficient condition
for the potential to be zero is also necessary.

We note that in the case in which our proposed model
form is consistent with the dynamics of the true system �e.g.,
they are both expressed by a degree two polynomial as as-
sumed in Eqs. �19� and �3��, there is only one possible choice
of aijk� , bij� , and ci� that minimizes the potential �5�, namely,
aijk� =aijk, bij� =bij, and ci�=ci. This follows from the principle
that two polynomials are equal only if all their coefficients
are equal, and from the fact that Eq. �5� implies a one to one
correspondence between the model state variables and those
of the true system.

We propose to adaptively evolve the estimates of the
parameters aijk� ,bij� ,ci� in time according to the following gra-
dient descent relations:

daijk� �t�
dt

= − �a
��i

�aijk�
, �8a�

dbij� �t�
dt

= − �b
��i

�bij�
, �8b�

dci��t�
dt

= − �c
��i

�ci�
, �8c�

�a ,�b ,�c	0. Our hope is that aijk� �t�, bij� �t�, and ci��t� will
converge under this evolution to the true parameter values,
aijk ,bij ,ci.

First we consider Eq. �8a�. Let �f i�� jk denote
f i��x1� ,x2� , . . . ,xn�� evaluated at aijk� =0,

f i��x1�,x2�, . . . ,xn�� = aijk� xj�xk� + �f i�� jk. �9�

Substituting this into the right hand side of Eq. �8a�, we
obtain
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daijk� �t�
dt

= − 2�a�aijk� xj�
2xk�

2 + �f i�� jkxj�xk� − ẋixj�xk�	�. �10�

Similarly letting �f i�� j denote f i��x1� ,x2� , . . . ,xn�� evaluated at
bij� =0, Eq. �8b� gives

dbij� �t�
dt

= − 2�b�bij�xj�
2 + �f i�� jxj� − ẋixj�	�. �11�

Finally, we consider relation �8c� with �f i�� denoting
f i��x1� ,x2� , . . . ,xn�� evaluated at ci�=0. Then

dci��t�
dt

= − 2�c�ci� + �f i�� − ẋi	�. �12�

In this paper we consider the case where �a,b,c are very
large. For this situation the solutions aijk� , bij� , and ci� rapidly
converge to the minimum of the potentials �which is zero�.
Thus we can set the averages �¯ 	� on the right hand side of
Eqs. �10�–�12� to zero. We further consider that the average
�¯ 	� is performed over a time scale �−1, which is much
larger than the time scale Ts for variation in x�t�, in which
case aijk� �t�, bij� �t�, and ci��t� vary slowly compared to x�t�.
Under these conditions, Eqs. �8� and �10�–�12� then yield

�
l=1

n

�
m=l

n

ailm� �xl�xm� xj�xk�	� + �
l=1

n

bil��xl�xj�xk�	� + ci��xj�xk�	�

= �ẋixj�xk�	�, j = 1, . . . ,n; k = j, . . . ,n , �13a�

�
l=1

n

�
m=l

n

ailm� �xl�xm� xj�	� + �
l=1

n

bil��xl�xj�	� + ci��xj�	�

= �ẋixj�	�, j = 1, . . . ,n , �13b�

�
l=1

n

�
m=l

n

ailm� �xl�xm� 	� + �
l=1

n

bil��xl�	� + ci� = �ẋi	�. �13c�

Equations �13� constitute a system of M = ��n2 /2�
+ �3n /2�+1�n linear equations for the M quantities aijk� , bij� ,
and ci�. The coefficients of the quantities to be solved for, as
well as the driving factors on the right hand sides of Eqs.
�13�, are all of the form of an average ��¯ �	�, where for the
coefficients of the unknown �¯ � is a product of x� terms,
while for the driving factors �¯ � involves the time deriva-
tive ẋ of the observed experimental system state. In practice,
it is inconvenient to explicitly calculate the integrals for
these quantities in terms of the form

I�t� = �G�t�	� = ��t

e−��t−t��G�t��dt� �14�

at every time step. Instead we shall use the fact that I�t�
satisfies the differential equation

dI

dt
+ �I = �G�t� �15�

and obtain I�t� as a function of time by solving Eq. �15�.
Thus our adaptive system for finding estimates of the quan-
tities aijk ,bij ,ci is Eq. �4� for x��t� and Eq. �13� for aijk� �t�,
bij� �t�, and ci��t�, where the various terms in Eq. �13� are of

the form I�t�= �G�t�	� obtained by integrating Eq. �15�. If our
procedure works, the time evolutions of aijk� �t�, bij� �t�, and
ci��t� will converge to aijk, bij, and ci with increasing t.

In this paper, we focus on a case in which the true sys-
tem equations are linear in the unknown coefficients �e.g.,
they are expressible in forms of given degree polynomials as
in Eq. �1��. Under this assumption, the minimization of the
potentials can be achieved by solving a system of linear
equations as in Eq. �13�, which, in practice, is simpler than
solving the system of differential equations �10�–�12�. We
note, however, that our strategy can also be employed when
the true system equations �1� are nonlinear in the unknown
coefficients. For such a case, it may be impossible to obtain
a simple unique solution for the unknown coefficients as in
Eq. �13�, and integration of the gradient descent differential
equations �e.g., Eqs. �10�–�12�� is a potentially useful ap-
proach.

III. NUMERICAL EXPERIMENTS

A. An experiment with the Rössler system

We now present the numerical experiments testing the
above strategy for the example in which the unknown system
is the Rössler system described by Eq. �2�. The system in Eq.
�2� is evolved starting with a random initial condition on the
attractor x�0� ,y�0� ,z�0�, while the system in Eq. �3� is
evolved starting from a perturbed initial condition,

x1��0� = x1�0� + 
1�x,

x2��0� = x2�0� + 
2�y , �16�

x3��0� = x3�0� + 
3��z� ,

where �x ,�y and �z are zero-mean independent random num-
bers of unit variance drawn from a normal distribution; 
1

=7.45, 
2=7.08, and 
3=4.25 are the standard deviations of
the time evolutions of the state components of the true sys-
tem. We also need to specify the initial conditions for Eq.
�15� for the internal variables of the form �¯ 	�. For our
experiment, these are all initially set equal to random num-
bers drawn from a Gaussian distribution with zero mean and
standard deviation equal to 0.1. � is equal to 10−2 /2, so that
the sliding exponential time average �¯ 	� is performed over
a time �−1=200, which is long compared to the characteristic
time Ts for the evolution of a Rössler system. We estimate
the latter time to be about Ts
6, which is the average mea-
sured time interval between two consecutive peaks of x1�t�.
Numerical results are shown in Figs. 1 and 2. Figure 1 shows
the time evolutions of x1�t� and x1��t� �x2�t� and x2��t�, x3�t�
and x3��t�, respectively� at the beginning and at the end of the
simulation �note that at the end of the run, synchronization is
attained for all the three state variables�. Figure 2 shows the
time evolution of some of the estimated parameters �in red�
when compared to the corresponding true values in system
�3� �black dotted lines�. The values of all the M estimated
parameters aijk� �t�, bij� �t�, and ci��t� at the end of the run �t
=104� are reported in Table I. It is seen that both the coeffi-
cients that have true values equal to zero and those that have
true values different from zero are accurately estimated.
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We have repeated the experiment above many times, and
we have observed either success or failure of our strategy
depending on the random choice of initial conditions for Eqs.
�4� and �15�. We can explain the failure of our strategy ob-
served in some experiments in terms of the transient dynam-
ics toward synchronization. In fact, if during the identifica-
tion process, some of the coefficients aijk� , bij� , and ci� are not
correctly identified, these may eventually assume values that
make x��t� too large and x�t� diverge. Since this divergence
typically occurs on a time scale, which is faster than that on
which our strategy operates �and the coefficients are up-
dated�, our strategy fails at correctly identifying the coeffi-
cients. Here, to solve this problem, we propose to replace Eq.
�4� by the following equation:

ẋ� = F�̃�x�� + ��H�x� − H�x��� , �17�

where F�̃�x��= � f̃1�x� , f̃2�x� , . . . , f̃ n�x��T and

f̃ i�x� = � � if f i�x� 	 � ,

f i�x� if �f i�x�� 
 � ,

− � if f i�x� 
 − � ,
� �18�

where � is a given constant. To test this proposed alternative
scheme, we have performed numerical simulations involving
integration of Eqs. �17�, �13�, and �15�. For example, by
setting a value of �=104 in Eqs. �17� and �18�, our adaptive
strategy was always observed to be successful in yielding the
correct identification of the parameters.

B. An experiment with the Lorenz system

We now consider an example in which the unknown
system to be identified is the Lorenz system described by ẋ
=F�x�, x= �x1 ,x2 , . . . ,x3�T, i.e., n=3. For the Lorenz system,
the coefficients aijk�t�, bij�t�, and ci�t� in Eq. �1� are zero,

0 5 10 15 20
−20

0

20

time

x 1,x
1’

0 5 10 15 20
−20

0

20

time

x 2,x
2’

0 5 10 15 20
−50

0

50

time

x 3,x
3’

9980 9985 9990 9995 10000
−20

0

20

time

x 1,x
1’

9980 9985 9990 9995 10000
−20

0

20

time
x 2,x

2’

9980 9985 9990 9995 10000
0

20

40

time

x 3,x
3’

FIG. 1. �Color� The figure shows the time evolutions of
x1�t� ,x2�t� ,x3�t� �in black� and of x1��t� ,x2��t� ,x3��t� �in
red� at the beginning and at the end of the simulation.
�=10−2 /2, �=2.
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FIG. 2. �Color� The figure shows the time evolution of
some of the estimated parameters for the Rössler sys-
tem �in red� when compared to their true values �black
dotted lines�, �=10−2 /2, �=2.
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except for a213=−1, a312=1, b11=−10, b12=10, b21=28, b22

=−1, and b33=−8 /3, for which the system is chaotic.
Again, we assume that x�0� is initialized at a random

state on the chaotic attractor, while the system in Eq. �3� is
evolved starting from a perturbed initial condition �16� with

1=7.93, 
2=9.01, and 
3=8.62. In our test, we use our
adaptive strategy described in this paper with the aim of
identifying all the unknown system parameters aijk, bij, and
ci. We set �=10 and �=10−2 so that the sliding exponential
time �¯ 	� is performed over a time �−1=100, which is long
compared to the characteristic time Ts�
0.97 for the evolu-
tion of a Lorenz system �defined as the time at which the
autocorrelation function of x1�t� decays at one half of its
value at t=0�. Table I shows a comparison of all the M =30
parameters estimated at the end of the run �t=104� to their
true values. As can be seen, by using our strategy, we are
able to correctly identify all the M =30 unknown parameters
of the chaotic Lorenz system.

C. An experiment with time varying system
parameters

We now present the results illustrating the use of our
adaptive strategy to dynamically estimate the evolutions of
the true system parameters when these are slowly time vary-
ing, where by “slowly” we mean that they evolve on a time
scale, which is much longer than the averaging time �−1. In
this section, we consider that ẋ=F�t ,x� with x
= �x1 ,x2 , . . . ,xn�T and F�t ,x�= �f1�t ,x� , f2�t ,x� , . . . , fn�t ,x��T,
where

f i�t,x� = �
j=1

n

�
k=j

n

aijk�t�xjxk + �
j=1

n

bij�t�xj + ci�t� . �19�

We expect our identification strategy to work, provided that
the averaging time �−1��, where � is the time scale on
which the true system parameter drift takes place �for a simi-
lar use of our adaptive strategy, see Ref. 14�. To perform a
numerical test �2�, we have modified the Rössler equations as
follows:

F�x� = � − x2 − x3

x1 + 0.165x2

0.2 + �x1 − 10 + sin��t��x3
� , �20�

i.e., all the parameters are the same as in Sec. III A �i.e., time
invariant� but b33�t�=10+sin��t�. System �20� is observed to
be chaotic in the range 9�b33�11. In our test, we use our
adaptive strategy described in this paper, Eqs. �4�, �13�, and
�15�, with the aim of identifying all the unknown system
parameters aijk�t�, bij�t�, and ci�t�. We set �=2 and �=0.1, so
that Ts
�−1=10��−1.

For the case �= �100Ts�−1, Fig. 3 shows the time evolu-
tions of a313� �t� when compared to a313�t� and b33� �t� when
compared to b33�t�. The estimated parameters are seen to
accurately reproduce the evolutions of the true ones. Figure 4
shows the time averaged identification error EI

�

= 1
�
104−�

104
�b33� �t�−b33�t��dt��=0.3�104� versus �Ts for �=2,

�=0.1. The point indicated with a full dot corresponds to
�Ts=0.01 �the case shown in Fig. 3�; as can be seen, the
identification error becomes large if �Ts�1 is not satisfied.

IV. NOISE ANALYSIS

Here we consider the effects of measurement noise on
our identification procedure. Namely, we replace Eq. �4� by

ẋ� = F��x�� + ��H�xn� − H�x��� , �21�

where the noisy state xn= �x1
n ,x2

n , . . . ,xn
n�T is equal to xn=x

+��, � is a scalar gain, and �= ��1 ,�2 , . . . ,�m�T is an
m-dimensional vector, whose components are normalized
noise terms; we choose �i�t�=z
i�i�t�, where for each i, 
i is
the standard deviation of the time evolution of xi for the true
system; �i�t� at each time step of our numerical integration
are zero-mean independent random numbers of unit variance
drawn from a normal distribution; z is a normalization factor,
which is chosen so that ��1 makes the noise cause the
relevant state component to diffuse by an amount that over a
time interval Ts is roughly as big as the amplitude of varia-
tion in the relevant chaotic state component and is given by
z=�� /Ts, where � is the time step of our integration method
and Ts is the period of one oscillation of the true system.

TABLE I. Coefficients estimated by our strategy for the Rössler and the Lorenz systems at the end of a run,
t=104.

Rössler Lorenz Rössler Lorenz Rössler Lorenz

a111� 0.000 0.000 a211� 0.000 0.000 a311� 0.000 0.000
a112� 0.000 0.000 a212� 0.000 0.000 a312� 0.000 1.00
a113� 0.000 0.000 a213� 0.000 �1.00 a313� 1.000 0.000
a122� 0.000 0.000 a222� 0.000 0.000 a322� 0.000 0.000
a123� 0.000 0.000 a223� 0.000 0.000 a323� 0.000 0.000
a133� 0.000 0.000 a233� 0.000 0.000 a333� 0.000 0.000
b11� 0.000 �10.0 b21� 1.000 28.0 b31� �0.001 0.000
b12� �1.00 10.0 b22� 0.165 �1.00 b32� �0.001 0.000
b13� �1.00 0.000 b23� 0.000 0.000 b33� �10.0 �2.67
c1� 0.000 0.000 c2� 0.000 0.000 c3� 0.202 0.000
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Measurement noise introduces a rapid small-scale varia-
tion to the measurement time series xn�t�, thus making the
meaning of the time derivative dxn�t� /dt that would appear
in Eq. �5� questionable. Therefore we replace Eq. �5� by

�i = ��ẋi
� − f i��x1�,x2�, . . . ,xn���

2	�, i = 1,2, . . . ,n , �22�

where we obtain xi
��t� by low pass filtering the noisy state

xi
n�t� with cutoff frequency T. Then ẋi

� to be inserted in Eq.
�22� is obtained from the differential equation

ẋi
��t� +

1

T
xi

��t� =
1

T
xi

n�t� , �23�

where T is chosen to satisfy Ts�T��. In our numerical
experiment, we choose �=10−3 and T=4�10−3.

We monitor the robustness of our identification strategy
with respect to increasing values of the noise �. To this aim,
we introduce the following identification error measure:

EI�t� =
1

M��
i=1

n

�
j=1

n

�
k=j

n

�aijk� �t� − aijk� + �
i=1

n

�
j=1

n

�bij� �t� − bij�

+ �
i=1

n

�ci��t� − ci�� . �24�

We have performed numerical tests to investigate how

the time averaged identification error ĒI

= �1 /��
104−�
104

EI�t�dt depends on ���=0.3�104�. Our simu-

lations show that ĒI remains small through the range tested,
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FIG. 3. �Color online� The figure shows the comparison
between the time evolution of one estimated parameter
for system �20� �red dashed line� when compared to its
true value �black continuous line�, �Ts=0.01, �=0.1,
�=2. In the example, the true b33�t� is a function of
time, b33�t�=−10+sin��t�.
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FIG. 4. The figure shows the time averaged identifica-
tion error EI

� vs �Ts for �=2, �=0.1. The point indi-
cated with a full dot corresponds to �Ts=0.01 �the case
shown in Fig. 3�.
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and for example is less than 1% in the range 0���1 when
�=4�10−2, �=5.

V. THE CASE OF INCONSISTENT MODEL
EQUATIONS

In this section, we suppose that the dynamics of the true
system deviates from polynomial form �i.e., f i�x� cannot be
written as a given degree polynomial in x�, but we still do
our adaptive procedure using a polynomial model as in Eq.
�19�. As a first attempt, we continue to assume that the sys-
tem dynamics can be approximately modeled as a degree two
polynomial as in Eq. �3� and in so doing we want to test the
limits of this approach. Let us consider, for example, that the
true system dynamics is described by ẋ=F�x�, where F�x� is
given by

F�x� = �− x2 − x3 + �
1 sech�x1�
x1 + 0.165x2

0.2 + �x1 − 10�x3
� . �25�

Note that for �=0, Eq. �25� is equivalent to the Rössler Eq.
�2�, while for ��0 the system dynamics includes a transcen-
dental function, i.e., a function that cannot be expressed as a
finite degree polynomial. In what follows we implement the
same adaptive strategy described in Sec. II and test its effec-
tiveness for increasing values of �.

In following our adaptive procedure, because the true
and model systems are different, the evolving model param-
eters from our system of adapting equations do not settle into
constant values. Rather we observe that they time asymptoti-
cally fluctuate around some constant value. Thus we take for
our identification of the model parameters the time average
of these quantities.

In order to formulate a measure of the effectiveness of
our identification procedure with an inconsistent model, we
note that for practical purposes, one is often interested in
how well a model is able to reproduce the behavior of the
real system. In particular, a sensible question to ask would be
how well the model equations obtained through our adaptive
strategy forecast the future behavior of the true system, and,

in particular, how far in the future are such forecasts reliable.
In what follows we provide a partial answer to such a ques-
tion.

We have performed numerical experiments in which we
evaluate the error of the obtained model system when it is
used to forecast the evolution of the true system. We consider
two cases, �=0.1 and �=0.2. In Fig. 5 we have monitored
the forecast error 
1

−1�x1�t�−x1��t�� as function of t when the
model and the system are uncoupled and evolved from the
same initial condition x1�0�=x1��0� �which we have taken to
be a randomly chosen point from the Rössler attractor�. The
results in Fig. 5 have been averaged over 500 different
choices of the initial conditions. From Fig. 5, we observe that
for example, if we set our prediction time to be the length of
time over which the prediction error remains less than 10%,
it is about 12 �about 20� in the case of �=0.1 ��=0.2�. In
particular, the latter time is more than three times the char-
acteristic time scale of the true system Ts
6.

VI. CONCLUSION

In this paper, we have introduced a new strategy to iden-
tify the parameters of an unknown chaotic dynamical system.
We aim at synchronizing the real unknown system with an-
other system in silico, whose parameters are adaptively
evolved to converge on those of the real ones.

As a first attempt, we have assumed that the differential
equations governing the system dynamics are expressible or
approximately expressible in terms of polynomials of an as-
signed degree. For this case, our strategy relies on the as-
sumption that the only necessary information about the true
system is the dimensionality of its state vector and the order
of the polynomials. Under these conditions, we have shown
that we are able to extract the whole set of parameters of the
unknown system from knowledge about the dynamical evo-
lution of its state vector and its first derivative. Our proce-
dure relies on the minimization of appropriately defined po-
tentials that are zero when both the system state and
parameters are correctly identified. Interestingly, our strategy
is effective in detecting which parameters are/are not zero
and in obtaining correct estimates for those that are not zero.
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FIG. 5. The figure shows the prediction error 
1
−1�x1�t�

−x1��t�� as function of time for the cases of �=0.1 and
�=0.2. The results have been averaged over 500 differ-
ent choices of the initial conditions.
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We have further considered the effects of measurement
noise and we have proposed an alternative scheme that
works when only knowledge about the dynamical evolution
of true system state vector is available, which has been
shown to be effective even in the presence of relatively high
noise. We have also analyzed a situation in which the model
fitting function basis is slightly inconsistent with the true
system dynamics, and, for this case, we have evaluated how
well the obtained model is able to forecast the future behav-
ior of the true system, i.e., how far into the future it is able to
forecast its evolution.

As a further application, we presented the possibility of
extending our approach to the case in which the parameters
to be identified are slowly varying in time �i.e., on a time
scale that is slower than �−1�. The general strategy can also
be used if one has a system of known form with several
unknown parameters.
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