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We consider the problem of a dynamical network whose dynamics is subject to external

perturbations (“attacks”) locally applied at a subset of the network nodes. We assume that the

network has an ability to defend itself against attacks with appropriate countermeasures, which we

model as actuators located at (another) subset of the network nodes. We derive the optimal defense

strategy as an optimal control problem. We see that the network topology as well as the

distribution of attackers and defenders over the network affect the optimal control solution and the

minimum control energy. We study the optimal control defense strategy for several network

topologies, including chain networks, star networks, ring networks, and scale free networks.

Published by AIP Publishing. https://doi.org/10.1063/1.5030899

Optimal control of networks is an area of recent interest

in the literature, where focus has been placed on how the

network topology and the position of driver and target
nodes affect the optimal solution. Here, we study the dif-

ferent but related problem of optimally controlling a net-

work under attack. We investigate the role of the

network topology as well as of the distribution of attack-
ers and defenders over the network. Some of our results

are counter-intuitive, as we find that for small chain net-

works, star networks, and ring networks, the distance

between a single attacker and a single defender is not the

key factor that determines the minimum control energy.

We also consider the case of a large scale-free network in

the presence of a single attacker and multiple defenders

for which we see that the minimum control energy varies

over different orders of magnitude as the position of the

attacker is changed over the network. For this case, we

observe that the minimum distance between the attacker

node and the defender nodes is a good predictor of the

strength of an attack.

I. MODEL

Most infrastructure systems are networked by design,

such as power grids,1 road systems,2 telecommunications,3

water and sewer systems,4 and many others. These net-

worked systems are prone to disruption by either natural

causes, such as extreme weather events and aging equip-

ment, or purposeful attack, such as terrorism.5,6 In power

grid systems, small local failures have been known to cas-

cade to blackouts affecting large swaths of a state or a

country.7 In a road system, small incidents can lead to large

scale congestion.8 Attacks on networked systems can be

either structural, where links in the underlying graph are

damaged or destroyed, or dynamical, where a disruptive

term is added to the dynamical equations that govern the

behavior of the system. While our approach can be extended

to encompass both structural and dynamical attacks, for the

sake of simplicity, here we focus on dynamical attacks.

Some examples of dynamical attacks on networked systems

are pollutants introduced in a hydraulic network9 or the

spreading of viruses in networked computers.10

We examine the behavior of both simple and complex

dynamical networks, when they are attacked by one or more

external signals which perturb the dynamics of the network

nodes. To illustrate this situation, a ten node network where

three of the nodes are under attack is shown in Fig. 1. We

assume that the networks at hand have an ability to defend

themselves against attacks with appropriate counter-

measures, which we model as actuators located at a subset of

the nodes in the network. In Fig. 1(e), nodes 1, 3, and 10 are

attached to actuators, and so these nodes we define as

defenders (equivalently driver nodes as they are defined in

much of the complex network literature11). Defenders can

take many different forms in the networked systems

described above, such as traffic signals and GPS routing in

road networks, purposely tripping lines in a power grid in

case of shedding, or quarantining a portion of a computer

network when attacked by viruses.

The network dynamics is described by a linear model

_xðtÞ ¼ AxðtÞ þ HwðtÞ þ BuðtÞ; (1)

where xðtÞ ¼ ½x1ðtÞ; ::; xnðtÞ� is the n� 1 time-varying state

vector, uðtÞ ¼ ½u1ðtÞ; ::; umðtÞ� is the m� 1 time-varying con-

trol input vector, and wðtÞ ¼ ½w1ðtÞ; ::;wqðtÞ� is the q� 1

time-varying vector representing the attackers. Hereafter, we

design the control input vector using the fixed-end point min-

imum energy control problem for a system described by the

a)Electronic mail: ikafle@unm.edu.
b)Electronic mail: sbartaula@unm.edu.
c)Electronic mail: ashirin@unm.edu.
d)Electronic mail: iklick@unm.edu.
e)Electronic mail: pankazdas@unm.edu.
f)Electronic mail: fsorrent@unm.edu.

1054-1500/2018/28(5)/051103/9/$30.00 Published by AIP Publishing.28, 051103-1

CHAOS 28, 051103 (2018)

https://doi.org/10.1063/1.5030899
https://doi.org/10.1063/1.5030899
mailto:ikafle@unm.edu
mailto:sbartaula@unm.edu
mailto:ashirin@unm.edu
mailto:iklick@unm.edu
mailto:pankazdas@unm.edu
mailto:fsorrent@unm.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5030899&domain=pdf&date_stamp=2018-05-15


linear dynamics shown in Eq. (1). Here, A ¼ faijg is a square

n� n real adjacency matrix which has non-zero elements aij

if node i receives a signal from node j and is 0 otherwise.

The n�m matrix B is the control input matrix and describes

how the control inputs are connected to the nodes, i.e., the

location of the defenders, namely, Bij is different from zero

if the control input j is attached to node i and is zero

otherwise. The matrix H models how the attackers affect the

network nodes, namely, Hij is different from zero if attacker

j is active on node i and is zero otherwise. The matrix A is

Hurwitz and therefore by setting w¼ 0 and u¼ 0, the sys-

tem asymptotically approaches the origin of state space,

which represents the nominal healthy condition for the

system.

FIG. 1. (a) Network under no attack. (b) Time evolution of the network nodes under no attack. (c) Same network as in (a), with attackers located at nodes 2, 5,

and 7. (d) Time evolution of the network nodes under attack. (e) Same network as in (c) with defenders located at nodes 1, 3, and 10. (f) Time evolution of the

network nodes for the case that the network is attacked [same as in (d)] but a response from the defender nodes is also present.
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In Figs. 1(a) and 1(b), we show a network which has sta-

bilizing self-loops so that the adjacency matrix is Hurwitz.

This ensures that after any perturbation of the states away

from the origin, the states will return to the origin. Next, we

add external attackers to the system attached to nodes 2, 5,

and 7. In Fig. 1, we color nodes 2, 5, and 7 cyan as they are

the attacked nodes. We assume the dynamics of each attacker

is wjðtÞ ¼ etwjð0Þ, where the initial conditions wjð0Þ are cho-

sen as uniformly distributed random numbers in the interval

(0, 1). As shown in Fig. 1(d), the time evolution of the states

of those nodes directly attacked, and any nodes downstream

such as nodes 3, 6, and 10 are now diverging. On the other

hand, any nodes upstream of the attackers are not affected by

the attack and so they will converge to the origin. To counter

the attacks, we add external control inputs attached to the red

nodes 1, 3, and 10, which we call defender nodes. Thanks to

the control action exerted by the defender nodes, the attack

can be mitigated and now all nodes return to the origin again.

The particular control strategy implemented at the defender

nodes to counter the attack will be described in what follows.

As a reference example, in this paper we consider a

power grid, with nodes representing buses and edges repre-

senting transmission lines.12 Both generation and a load can

be present at each bus. We assume that some of the loads are

vulnerable to attacks, in which case ancillary generation at

the other nodes can be used to mitigate the effects of the

attack. As explained in Sec. III, the dynamics of a power

grid can be cast in the form of Eq. (1),

_d
_h
_x

2
64

3
75 ¼ A

d

h

x

2
4

3
5þ H

0

PL

0

2
4

3
5þ B

0

0

PM0

2
4

3
5; (2)

where the vector d ¼ ½d1;…; dn; � contains information on the

voltage phase angles at generator buses, the vector h

¼ ½h1;…; hn� describes the voltage phase angles at load buses,

and the vector x ¼ ½x1;…;xn; � represents the frequency

deviation at generator buses. The vector PL ¼ ½PL
1 ;…;PL

n �
contains information on the power consumption at the load

buses and the vector PM0 ¼ ½PM0
1 ;…;PM0

n � represents the ancil-

lary power generation (for more details, see Sec. III.)

In what follows we introduce the strong assumption that a

known model for the attackers exists. This assumption could

be more or less unrealistic depending on the application to

which we are applying this methodology; however, our results

are general as they can be applied to a variety of models for

the attackers’ strategy and as we will see, they are to some

extent independent of the attackers’ specific strategy. The type

of attack strategies we consider is either one of the following

functions: (i) constant, (ii) linearly increasing, or (iii) expo-

nentially increasing, which can be modeled as

_wi ¼ siwi þ ri; (3)

where si and ri are constants. We consider the following

three cases:

(i) if si¼ 0 and ri¼ 0 then the attack strategy is constant.

(ii) if si¼ 0 and ri > 0 then the attack strategy is linearly

increasing.

(iii) if si > 0 and ri¼ 0 then the attack strategy is expo-

nentially increasing.

By incorporating the model for the attackers’ behavior,

we can rewrite Eq. (1) as follows:

x_~ðtÞ ¼ ~A~xðtÞ þ ~r þ ~BuðtÞ; (4)

yðtÞ ¼ C~xðtÞ; (5)

where

~A ¼
A ..

.
H

� � � � � � � � �

0 ..
.

S

2
6664

3
7775; ~B ¼

B

� � �
0

2
64

3
75; C ¼ In

..

.
0

h i
;

and ~r ¼
0

� � �
r

2
64

3
75: ð6Þ

Here, ~x ¼ ½xT ;wT �T is the nþ q vector containing the states of

the network nodes and attackers, the behavior of which is

assumed to be known, yðtÞ ¼ ½y1ðtÞ; ::; ynðtÞ� is the n� 1

time-varying vector of outputs, S ¼ diagfs1; ::; sqg is the diag-

onal matrix that contains information on the attackers

strengths, and the vector r ¼ ½r1;…; rq� describes the attackers

strategies [see Eq. (3)]. The matrix ~A now has a block triangu-

lar structure and is non-Hurwitz, due to the attackers’ dynam-

ics. The matrix C relates the outputs yðtÞ to the state ~xðtÞ. In

this particular case, y(t) coincides with xðtÞ in Eq. (1), i.e., it

selects the states of the nodes but not those of the attackers.

When u ¼ 0, the time evolution of the network nodes

deviates from the origin due to the influence of the attackers.

The question we will try to address is the following: how can

we design an optimal control input that in the presence of an

attack, will set the state xðtf Þ ¼ 0 at some preassigned time

tf. We assume that all the attacks take place simultaneously

in the interval [0; tf ]. The time tf can be thought of as the

required time to neutralize the attackers, so that for t > tf ,

the network has returned to its healthy state and the control

action is no longer needed anymore. Here, without loss of

generality, we assume the optimal control input to be the one

that minimizes the energy function

E ¼
ðtf

0

uTðtÞuðtÞdt: (7)

The dynamics is linear and our objective function is qua-

dratic (minimum energy). Therefore, applying the theory of

linear quadratic optimal control (LQR),13–15 the control input

u�ðtÞ that satisfies the constraints and minimizes the control

energy is16

u�ðtÞ ¼ BTe
~A

Tðtf�t0ÞCTðCWCTÞ�1

� yf � Ce
~A

Tðtf�t0Þx0 � CFðtf Þ~r
h i

; (8)

where Fðtf Þ ¼
Ð tf

t0
e

~Aðtf�sÞds. The corresponding optimal

energy is E� ¼
Ð tf

t0
u�TðtÞu�ðtÞdt. First, we define the control-

lability Gramian as a real, symmetric, semi-positive definite

matrix
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W ¼
ðtf

t0

e
~Aðtf�sÞ ~B ~B

T
e

~A
Tðtf�sÞdt: (9)

Following Ref. 16, the minimum control energy can be com-

puted and is equal to

E� ¼ ðyf � Ce
~Aðtf�sÞ � CFðtf Þ~rÞTðCWCTÞ�1

� ðyf � Ce
~Aðtf�sÞ � CFðtf Þ~rÞdt

¼ bTW�1
p b; (10)

where the vector b ¼ Ce
~Aðtf�t0Þx0 þ CFðtf Þ~r � yf is the con-

trol maneuver and Wp ¼ CWCT is the n� n symmetric, real,

non-negative definite output controllability Gramian. The

smallest eigenvalue of the output controllability Gramian,

l1, is nonzero if the system is output controllable. If this con-

dition is satisfied, l1 usually dominates the expression for

the minimum control energy.16

A. Effect of the attackers on output controllability
Gramian

Consider the system under attack described by Eqs. (4)

and (5). We write

e
~At ¼

eAt ..
.

F1ðtÞ
� � � � � � � � �

0 ..
.

eSt

2
6664

3
7775; where

F1ðtÞ ¼
ð1

0

eð1�sÞAtHtesStds: 17

Moreover;

~B ~B
T ¼

B

� � �
0

2
64

3
75 BT ..

.
0T

h i
¼

BBT ..
.

0

� � � � � � � � �

0 ..
.

0

2
6664

3
7775:

The controllability Gramian

W ¼
ðtf

t0

e
~At ~B ~B

T
e

~A
T

tdt ¼
ðtf

t0

eAt ..
.

F1ðtÞ
� � � � � � � � �

0 ..
.

eSt

2
6664

3
7775

�
BBT ..

.
0

� � � � � � � � �

0 ..
.

0

2
6664

3
7775

eAT t ..
.

0

� � � � � � � � �

FT
1 ðtÞ ..

.
eST t

2
6664

3
7775dt

¼
ðtf

t0

eAtBBTeAT t ..
.

0

� � � � � � � � �

0 ..
.

0

2
6664

3
7775dt

¼
Wp

..

.
0

� � � � � � � � �

0 ..
.

0

2
6664

3
7775: (11)

Note that Wp 2 Rn�n does not depend on the matrices S
and E i.e., it is independent of the location of the attackers

and the strength of the attackers. The output controllability

Gramian

CWCT ¼ I ..
.

0

h i Wp
..
.

0

� � � � � � � � �
0 ..

.
0

2
664

3
775

I
� � �
0

2
4

3
5 ¼ Wp: (12)

If the pair (A, B) is controllable, the matrix Wp is positive

definite and thus invertible.18,19

B. Effect of the attackers on control maneuver

We have already defined the control maneuver as

b ¼ Ce
~Aðtf�t0Þx0 þ CFðtf Þ~r � yf : (13)

According to our assumptions, we set yf ¼ 0 (target state

coincides with the origin). The eigenvalue equation for

the matrix ~A ¼ VKV�1, where the eigenvector

matrix V ¼ ½v1jv2j � � � jvnþq� and the eigenvalue matrix K
¼ diagfk1;…; kq; kqþ1;…; kqþng where, k1 � � � � � kq

� kqþ1 � � � � � kqþn. Note that because of the block diago-

nal structure of ~A and the assumption that the matrix A is

Hurwitz the first q eigenvalues of ~A, which correspond to the

attackers dynamics, ki ¼ si; i ¼ 1;…; q.

We write, x0 ¼
P

i civi ¼ Vc, where the vector c ¼
½c1; c2;…; cnþq� and Fðtf Þ~aðrÞ ¼

P
i giVi ¼ Vc where the

vector g¼ [g1, g2, … , g(nþq)]. Now from Eq. (13)

b ¼ Ce
~Aðtf�t0Þx0 ¼ C

Xnþq

i¼1

cie
kiðtf�t0Þvi þ

Xnþq

i¼1

giJivi

 !
; (14)

where Ji ¼ ekiðtf �t0Þ�1
ki

. For large tf, the above equation can be

approximated as

b � C
Xq

i¼1

cie
siðtf�t0Þ þ gi

esiðtf�t0Þ � 1

si

 !
vi: (15)

We write

b ¼ bn; (16)

where n is a vector with norm equal to 1 having the same

direction as b. We see from Eq. (15) that for large tf, the

order of magnitude of b is determined by the number and

strengths of attackers (i.e., si, i ¼ 1; ::; q).

We now express the symmetric matrix Wp in terms of

its eigenvalues and eigenvectors. Wpwi ¼ liwi; where

i ¼ 1;…;N so that W�1
p ¼

Pn
i¼1 l�1

i wiw
T
i :

Replacing W�1
p into the Eq. (10)

E� ¼ bT
Xn

i¼1

l�1
i wiw

T
i b; where l1 	 l2 	…:: 	 lN

�b2ðnTw1Þ2l�1
1 ; (17)
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where the approximation holds, when l1 
 l2 and when

nTw1 6¼ 0. Thus, we can write

E� � b2l�1
1 ðnTw1Þ2 ¼ E1E2E3; (18)

where E1 ¼ b2 corresponds to the strength of the attackers,

E2 ¼ l�1
1 does not depend on the attackers but depends on

the network topology and the location of the defenders and

E3 ¼ ðnTw1Þ2 depends on the distribution of attackers and

defenders over the network. Note that the vector w1 is the

eigenvector of Wp associated with its smallest eigenvalue.

The term nTw1 measures the angle between two vectors both

taken to have norm 1, thus 0 	 ðnTw1Þ2 	 1.

Now consider the simple ten node network in Fig. 1

and place the defenders on three nodes [nodes colored red

in Fig. 1(e)]. In Fig. 2 we have considered the effect of

different choices for the attackers. The smallest eigenvalue

l1 of the output controllability Gramian Wp remained con-

stant as the number and position of the attackers was

varied.

Figure 2 also illustrates the case that the same network

is subjected to attack changing only the position of the

defenders, now at nodes 2, 7, and 9. Again we see that the

minimum eigenvalue of the Gramian (l1) is independent of

the number and position of the attackers. However, we see

that l1 depends on the location of the defenders.

We come to the initial conclusion that we can determine

for different networks, and different locations of attackers

and defenders, the minimum control energy needed to con-

trol a network under attack in a preassigned time. Our main

result is that the expression for the minimum control energy

can be approximated as follows: E� � E1E2E3. While E1

depends on the position of the attackers but not on the net-

work topology, E2 depends on the matrices A and B (on the

Gramian), but not on the number, position, or strength of the

attackers, and the quantity E3 depends on the distribution of

attackers and defenders over the network. This is investi-

gated in more detail in Sec. II.

II. ANALYSIS OF NETWORK TOPOLOGIES

In this section, we investigate how the control energy

changes as we vary the position of attacked nodes and

defenders over several networks. In all the simulations that

follow, we set Aij ¼ Aji ¼ 1 if a connection exists between

node i and j and Aij ¼ Aji ¼ 0 otherwise. We also set the

matrices B and H to be composed of different versors as col-

umns, which indicates each attacker and/or defender is local-

ized at a given node (in particular, each attacker is attached

to one and only one attacked node). We will first ensure for

each of the networks that follow, the controllability is veri-

fied by a proper choice of defender nodes. Then, we study

the effect of positioning the attackers on different network

nodes. In order to compute the quantities nTw1 and b2, we

add a small random term to the entries on the main diagonal

of the adjacency matrix A; Aii  Aii þ/i; i ¼
1;…;N; where /i is a random number uniformly chosen in

the interval ½0; E�. This is done to ensure the pair ðA;BÞ is

controllable, see, e.g., Refs. 16 and 20.

A. Chain networks

Now we investigate how E1 and E3 vary in the six node

bidirectional chain network shown in Fig. 3(a). We keep

the position of the defender fixed at node 1 as indicated in

Fig. 3. Then, we vary the position of the attacked nodes

over the chain.

We see that the term nTw1, corresponding to E3, gener-

ally increases when we increase the distance between the

defender node and the attacked node. The term nTw1 is

largest when the attacker is at node 6, i.e., the node which is

farthest from the defender. Also, we see a small variation in

the terms of b2 as we change the position of the attacker as

above. However, the effect of varying the position of the

attacker on b2 is less pronounced than on nTw1. Overall, these

results are consistent with the previous studies on target control

of networks where the control energy was found to increase

with the distance between driver nodes and target nodes.21

Figure 4 shows the case that the defender is placed at

the center node of the chain network. Here, we see that the

quantity b2 decreases as the distance from the defender node

and the attacked node increases. However, the quantity nTw1

displays a much more complex and somehow surprising

behavior, also distinctly different from that observed in Fig.

3. Namely, we see that the quantity nTw1 alternatively

increases and decreases as the position of the attacker is

moved over the chain. This type of behavior is different

from what seen in the case of target control of networks.21

B. Star network

Consider the case of the star network in Fig. 5(a) with

defender at node 1 and the position of the attacked node var-

ied from node 2 to 9. We see that the value of nTw1 when the

position of the attacked node is in the first layer of the star

network (i.e., on nodes 2, 3, 4, and 5) is nearly constant over

FIG. 2. log10(1/l1) for the network shown in Fig. 1 as we increased the

number of nodes subject to attacks. Blue circle: Defenders are placed on

nodes 1, 3, and 10; Red square: Defenders are placed on nodes 2, 7, and 9.

Attackers are chosen in a random order, but ensuring that no node is both

attacked and a defender.

051103-5 Kafle et al. Chaos 28, 051103 (2018)



that layer. When the attacker is on the second layer (i.e., on

nodes 6, 7, 8, and 9), the value of nTw1 is also nearly con-

stant. In Fig. 5(b), we see a similar pattern for b2 as we saw

for nTw1 in Fig. 5(b). The value of b2 for the first layer is

equal and so is for the second layer. However, when compar-

ing the two layers, we see from both panels (b) and (c) in

Fig. 5 that surprisingly the energy to control the star network

decreases with the distance between the attacked node and

the defender over the network.

C. Ring network

We now consider a small ring network of 8 nodes

[shown in Fig. 6(a)]. The defender is at node 1 and the

FIG. 3. (a) Bidirectional chain net-

work. The defender node is in red and

the attacked node is in cyan. (b) nTw1

versus the position of the attacker. (c)

Plot of b2 as the position of the

attacker is varied. We perform calcula-

tions setting tf¼1, si ¼ 2:5; ri ¼ 0;
and E ¼ 10�2.

FIG. 4. (a) A chain network with

defender at the center node. (b) Plot of

nTw1 vs. the position of the attacked

node. (c) Plot of b2 vs. the position of

the attacked node. We perform calcula-

tions setting tf¼1, si ¼ 2:5;
ri ¼ 0 and E ¼ 10�2. The bars repre-

sent the standard deviation taken over

100 different realizations.

FIG. 5. (a) A star network. (b) Plot of nTw1 vs position of the attacker. (c) b2 vs. the position of the attacked nodes. We perform calculations setting tf¼1,

si ¼ 2:5; ri ¼ 0 and E ¼ 10�2. The bars represent the standard deviation taken over 100 different realizations.
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attacker can be at any other node. From Fig. 6(b), we see

that the value of nTw1 varies with the distance between the

attacked and defender nodes over the ring (nodes 2 and 3 at

distance 1, nodes 4 and 5 at distance 2, nodes 6 and 7 at dis-

tance 3, and node 8 at distance 4). However, the variation is,

once again, non-monotonic with respect to the distance. In

particular, we do not see that the energy to control the attack

monotonically increases with the distance between attacker

and defender. Figure 6(c) shows that in this case b2 is inde-

pendent of the position of the attacker over the ring network.

Figure 6(d) shows the total energy E� from Eq. (10), which

is consistent with Fig. 6(b).

D. Scale free networks

Here, we consider a 300 node Barabasi Albert scale free

network11 with average degree 2. We select 10% of the

nodes to be defenders and position them so to ensure that the

pair ðA;BÞ is controllable using the algorithm described in

Ref. 22. We then vary the choice of a single attacked node

over the network, one by one, excluding the defender nodes.

For each selection, we compute D, the minimum shortest dis-

tance over the network between the attacked node and the

defender nodes

D ¼ min
d

shortest distanceða; dÞ; (19)

where a indicates the attacked node and d the defender

nodes. Each point in Fig. 7(a) indicates the value of nTw1 for

a given choice of the attacked node versus the degree of the

attacker. As can be seen, the quantity nTw1 varies over sev-

eral orders of magnitude for different choices of the attacked

nodes. In particular, certain nodes are weak attackers as the

required control energy is particularly low when these nodes

FIG. 6. (a) An eight node ring network

with defender at node 1. (b) Plot of

nTw1 vs the position of the attacked

node. (c) Plot of b2 vs the position of

the attacked node. (d) Total energy E
as the position of the attacked node is

varied. The bars represent standard

deviations over 100 different realiza-

tions. We perform calculations setting

the final time tf¼1, si ¼ 2:5; ri ¼ 0

and E ¼ 10�2.

FIG. 7. (a) Plot of nTw1 vs the degree

of the attacked node for a 300 node

scale free network with average degree

2. (b) Plot of b2 vs the degree of the

attacked node. Green circle indicates

attacked nodes with D ¼ 3. Blue circle

indicates attacked nodes with D ¼ 2.

Red circle indicates attacked nodes

with D ¼ 1. We perform calculations

setting the final time tf¼1 with

si ¼ 2:5; ri ¼ 0 and E ¼ 10�2.
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are subject to an attack. Figure 7(b) indicates the value of b2

for the given choice of attacker node versus the degree of the

attacker. The quantity b2 increases as the degree of the

attacked nodes increases and the quantity D decreases. While

attacked nodes with D ¼ 1 tend to have a slightly higher

value of b2, the value of nTw1 is typically at least one order

of magnitude lower, indicating that the minimum control

energy E is much lower when these nodes are attacked.

Overall, Fig. 7 shows that the degree of a node is not a good

predictor for a weak attacker, as these are nodes of all possi-

ble degrees. However, the parameter D appears to be a good

indicator for a weak attacker, as these have typically D ¼ 1,

i.e., they are neighbors of at least one defender.

III. AN EXAMPLE OF APPLICATION OF THE ANALYSIS
TO INFRASTRUCTURE NETWORKS

The application discussed in this section was presented

in Ref. 12. There, they use the IEEE 39 bus system where a

dynamic load altering attack is used to destabilize the system.

The power system dynamics can be described as

follows:12

I 0 0 0

0 I 0 0

0 0 �M 0

0 0 0 0

2
66664

3
77775

_d
_h

_x

_u

2
66664

3
77775

¼

0 0 I 0

0 0 0 �I

KI þHGG HGL KP þDG 0

HLG HLL 0 DL

2
66664

3
77775

d

h

x

u

2
66664

3
77775þ

0

0

0

I

2
66664

3
77775PL:

(20)

Equation (20) can be rewritten as follows, after setting

_u to zero and replacing in the equations for the time evolu-

tion of d; h, and x

_d
_h

_x

2
664

3
775 ¼

I 0 0

0 DL�1

0

0 0 �M�1

2
64

3
75

0 0 I

HLG HLL 0

KI þHGG HGL KP þDG

2
64

3
75

�
d

h

x

2
64

3
75þ

0

DL�1

0

2
64

3
75PL: ð21Þ

Let us assume that we can add an ancillary generator in our

power grid system to compensate for over- and under-

frequency disruptions. Then, the mechanical power input PM
i

at the i generator with ancillary generation power PM0

i is

given by

PM
i ¼ � KP

i xi þ KP
i

ðt

0

xi þ PM0

i

� �
: (22)

Now the total power grid system with load attack on PL and

ancillary generation PM can be written in the form of Eq.

(22) as follows:

_d
_h

_x

2
664

3
775 ¼ A

d

h

x

2
64

3
75þ H

0

PL

0

2
64

3
75þ B

0

0

PM

2
64

3
75; (23)

where

A¼
I 0 0

0 ðDLÞ�1
0

0 0 �M�1

2
4

3
5� 0 0 I

HLG HLL 0

KIþHGG HGL KPþDG

2
4

3
5

And

H ¼
0

ðDLÞ�1

0

2
64

3
75;

B ¼
0

0

�M�1

2
64

3
75:

The matrix A is the system matrix, the matrix E determines

the effect and position of the attackers, and the matrix B
determines the effect and position of the defenders. Note that

Eq. (23) is the same as Eq. (2).

IV. CONCLUSIONS

In this paper, we have studied an optimal control prob-

lem on networks, where a subset of the network nodes are

attacked but the attack is mitigated by using available actuat-

ing capabilities at another subset of the network nodes.

Compared with the previous work on optimal control of net-

work,11,16,20,21 we consider a situation in which the control

action is implemented, along side external dynamics also

affecting the network.

We envision this work to be relevant to critical infra-

structure networks (such as power grids), which are suscepti-

ble to attacks. While our results assume knowledge of the

attacker’s strategy, which is often unavailable, our analysis

can be used to design infrastructure networks that are resis-

tant to attacks. This can be done by considering all possible

attacks that can affect the network and for each case, com-

pute the optimal control solution. We have studied how the

minimum control energy varies as the position of the

attackers and defenders is varied over different networks

such as chain, star, ring, and scale free networks. Our main

result is that the expression for the minimum control energy

can be approximated by the product of three different quanti-

ties E1E2E3. While E1 depends on the position of the attack-

ers but not on the network topology, E2 depends on the

matrices A and B (on the Gramian), and E3 depends on the

position of both the attacked nodes and defender nodes over

the network.

In chain, star, and ring networks, we see that for a single

attacker and a single defender, often the minimum control

energy is not an increasing function of the distance between

the attacked node and the defender node. However, for a

scale free network with multiple defenders and a single

attacker, we see that a good predictor for the strength of the
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attack is provided by the quantity D (the minimum distance

between the defender nodes and the attacked node over the

network). Using the approach in Ref. 16, our work can be

generalized to the case that the defense strategy only protects

a subset of the network nodes.
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