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Structural permeability of complex networks to
control signals
Francesco Lo Iudice1,2, Franco Garofalo1 & Francesco Sorrentino2

Many biological, social and technological systems can be described as complex networks.

The goal of affecting their behaviour has motivated recent work focusing on the relationship

between the network structure and its propensity to be controlled. While this work has

provided insight into several relevant problems, a comprehensive approach to address partial

and complete controllability of networks is still lacking. Here, we bridge this gap by devel-

oping a framework to maximize the diffusion of the control signals through a network, while

taking into account physical and economic constraints that inevitably arise in applications.

This approach allows us to introduce the network permeability, a unified metric of the pro-

pensity of a network to be controllable. The analysis of the permeability of several synthetic

and real networks enables us to extract some structural features that deepen our quantitative

understanding of the ease with which specific controllability requirements can be met.
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C
omplex networks have attracted considerable attention
from the scientific community1–7 owing to their ubiquity
in nature and in artificial settings. Whether these networks

are natural or artificial, the question arises how mankind can
control their behaviour. For instance, in pinning control8–17,
a complex dynamical network can be controlled by injecting
control signals in a limited number of nodes (the driver nodes),
provided that these are chosen properly. As complete
controllability is a required condition for pinning control, refs
8–17 have dealt with and addressed complete controllability
problems in the context of complex networks.

The problem of selecting the driver nodes so to ensure
complete controllability of complex networks has been
approached by following the geometrical mapping of Kalman’s
theory18 proposed by Lin19. Recent work has focused on
analysing the conditions for complete controllability20–25.
However, in applications, achieving complete controllability is
often a chimera as both economical and physical constraints
typically affect the selection of the driver nodes. For instance,
previous work20,26,27 has pointed out that for gene regulatory
networks, a considerable amount of driver nodes are needed to
achieve complete controllability, which can turn out unfeasible. In
applications, the problem often arises of finding the set of driver
nodes ensuring controllability of another set of nodes. This is
the case, for instance, when attempting to design curative
interventions for cancer, as one is typically interested in acting
only on cells lying in carcinogenic and pre-carcinogenic state28,29.
Moreover, it is often the case that the selection of the driver nodes
is restricted to a well-defined subset of the nodes of the network.
For instance, in designing curative interventions, only some easily
accessible proteins are designated as targets for drugs30–32.
Finally, the need can arise of exerting these control actions
without perturbing some nodes that are assigned to particularly
important or vital functions. Some of these constraints have been
recently considered in ref. 33, where a heuristic strategy is
proposed for selecting the driver nodes ensuring controllability of
a set of target nodes. However, as stated in ref. 33, a geometrical
mapping of this problems is still lacking.

Here, we develop a geometrical framework to comprehensively
address the problem of selecting the set of driver nodes that
maximizes the diffusion of the control signals through a network
in the presence of constraints that inevitably arise in applications.
Our method helps the analysis of the readiness of networks to be
controllable, allowing us to define the structural permeability of
complex networks to control signals, a measure of the extent to
which control signals are able to penetrate these networks
regardless of the number of driver nodes. Following this
approach, we will perform a permeability analysis of both
artificially generated and real network topologies. In so doing, we
will shed light on certain features that appear to be general, in the
sense that they are observed irrespective of the particular network
considered.

Results
Optimal driver nodes selection. The dynamics of a linear
dynamical network formed of N nodes is described by

_x ¼ Ax; ð1Þ

where x¼ [x1, x2, ..., xN]T is a vector describing the states of the
nodes of the network. The matrix A¼ {Aij} defines the topology
of the network, that is, Aij measures the coupling from node j to
node i. Roughly speaking, if Aija0, then the dynamics _xi of node i
depends on that of node j. The topology of a network can be
represented by means of a graph in which a directed edge

connects node j to node i if the corresponding element Aij of the
matrix A is non-zero.

When attempting to control (1), a control signal is injected in a
certain number, say M, of the nodes. Thus, equation (1) can be
rewritten as follows:

_x ¼ AxþBu: ð2Þ
where u¼ [u1, u2, ..., uM]T is the set of control signals and B is an
N�M matrix that reflects the choice of the set of driver nodes
OD. The set of controllable nodes C, of cardinality Cj j, depends on
the selection of the set of driver nodes OD.

According to the structural controllability approach19,34, the
number of controllable nodes of the dynamical network (2)
coincides with the generic rank35 of its controllability matrix
[B AB A2B AN� 1B]. In other words, this condition ensures the
number of controllable nodes be Cj j for all values of the non-zero
entries of the matrices A and B except for a set with Lebesgue
measure zero. In ref. 34, Hosoe presents a geometrical mapping of
the condition on the generic rank of the controllability matrix.
Namely, Hosoe states that, given the set of driver nodes OD, Cj j
coincides with the dimension of the largest subgraph composed of
|OD| directed paths and disjoint cycles, provided that all nodes of
the subgraph must be accessible from the driver nodes (that is,
there exists a path from each driver node to each vertex of the
subgraph). The dimension of the subgraph is defined as the
number of edges it encompasses. A method for the computation
of C, given the set of driver nodes OD, is given by Poljak36. Both
Hosoe34 and Poljak36 aim at evaluating C, given OD. In what
follows we will show how to optimally choose OD. In doing so,
motivated by the aforementioned economical and physical
constraints that in applications limit the ability to freely select
the driver nodes, we restrict the selection to a set of admissible
nodes, say O. Moreover, we assume that controllability is sought
of a given set of target nodes, say F. We also consider a set of
nodes that one does not wish to perturb while exerting the control
action, say C, and will refer to these as untouchable nodes. In
general, the intersection of the sets O and F is nonempty, as
nodes may act as both targets and admissible drivers. However,
the pairs of sets (F, C) and (O, C) are disjoint.

Our approach allows us to cope with two general problems. In
problem 1, we select the set of driver nodes OD of fixed cardinality
|OD|¼M out of the set of the admissible nodes O that maximizes
Cj j, satisfying the constraints that C includes the set of target

nodes F, and that the nodes of the set C are not perturbed. In
problem 2, we select the set of driver nodes OD of minimum
cardinality out of the set of the admissible nodes O, satisfying the
constraints that C includes the set of target nodes F, and that the
nodes of the set C are not perturbed.

Figure 1 depicts a typical scenario in which our approach finds
application. More information on the formulations of problems 1
and 2 can be found in Supplementary Note 1.

By varying M and the composition of the sets F, C and O, the
general problems 1 and 2 can be specified to cope with a broad
spectrum of scenarios. Among these, the following are prominent
in the literature. If the sets O and F coincide with the entire set of
vertices, C is empty, and there are no constraints on the number
of driver nodes, solving problem 2 corresponds to finding the set
of driver nodes of minimum cardinality that ensure complete
controllability of a network20. Moreover, when the set O
coincides with the entire set of vertices, and the sets F and C
are empty, solving problem 1 for M¼ 1 allows to determine the
node with maximum control centrality37. We remark that our
method yields an improvement with respect to the state of the art,
as in ref. 37 the node with maximum centrality is found by an
exhaustive application of Hosoe’s theorem34 to all the nodes of
the network. Finally, when O coincides with the entire set of
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vertices, C is empty, and F is a well-defined subset of nodes,
solving problem 2 allows us to find an optimal solution to the
problem for which a heuristic strategy is proposed in ref. 33
(Supplementary Note 1).

Our solution to problems 1 and 2 is based on the following
sequence of steps. First, the graph G of the network is augmented
with additional nodes representing the external control signals to
be injected into the network. These are initially connected by
means of outgoing and inbounding edges to all nodes of the
network. The construction of the augmented graph G0 is
concluded by adding self-loops to all nodes that do not already
have one. The graph G0 is then partitioned into disjoint cycles.
Among all possible cycle partitions of G0, the one is selected that
maximizes the number of edges of G entering nodes accessible
from the drivers. This task is performed by solving an integer
linear programme (ILP). The set of controllable nodes C is given
by the nodes of the cycle partition of G0 that either have as
inbounding edge an edge of G, or an edge exiting the nodes that
represent the input signals. As the additional edges allow to
reduce directed paths to cycles, the optimality of our method is
guaranteed by Hosoe’s theorem34.

An example of application of our method for problem 1 and
M¼ 1 is shown in Fig. 2; the orange node in Fig. 2b represents the
input signal, while the orange and blue edges are those added to
enable the formation of a cycle partition. The nodes with
inbounding black or orange edges are those encompassed in C.
A detailed description of our method for the solution of problems

1 and 2 is given in Supplementary Note 2, along with further
details on its optimality.

Structural permeability of complex networks to control signals.
By solving problem 1 for each value of M in the interval of
integers [1, N] without restrictions on the admissible, target and
untouchable nodes, we obtain the sequence of sets of optimal
driver node OD(M) and the corresponding C Mð Þj j. Figure 3a
portrays the sequence C Mð Þj j for the Budding Yeast Protein
Structure network (red) and the SciNet citation network (blue),
see Supplementary Table 1 for more information on these net-
works. The question of which one has a greater propensity to be
controlled is nontrivial, as, apparently, it varies depending on the
value of M. Namely, in Fig. 3a, we observe that for small values of
M, the red curve lies above the blue one, whereas the opposite is
observed for M40.1N.

To measure the readiness of a network to be controllable, we
define the network permeability to control signals mA[0, 1],
which, in the thermodynamic limit, can be computed as

m ¼
RN

0 C Mð Þj j �Mð ÞdMR N
0 N �Mð ÞdM

¼ 2
N2

Z N

0
C Mð Þj j �Mð ÞdM ð3Þ

For a given network, m is the difference between the area under
the curve C Mð Þj j, and the same area relative to an ensemble of N
disconnected nodes for which C Mð Þj j ¼ M; M ¼ 1; :::;N . This
quantity is then divided by the area under the curve C Mð Þj j ¼
N; M ¼ 1; :::;N so that m takes the value of 1 for networks that
are completely controllable by means of one driver node and the
value of 0 for ensembles of disconnected nodes. The integral
operator allows m to take into account the dimension of the
maximal set of controllable nodes for all values of M. We
emphasize that while controllability is a property of a network
together with the selected driver nodes, m is only related to the
network itself. Hence, the permeability allows us to measure, for
the first time, the propensity of a network to be controllable, that
is, the extent to which the network structure facilitates the
diffusion of the control signals. The permeability, as defined
above, is a structural network property. To evaluate the extent to
which a network can be made controllable in the presence of the
sets of admissible, target and untouchable nodes, we define the
indexes m(O), m(F) and m(C) all having values in [� 1, 1]. These
indexes represent the permeability of a network conditioned to
the particular choice of these sets. Further details on m(O), m(F)
and m(C) are given in Supplementary Note 3.

We have analysed a number of real and artificial networks in
order to shed light on the relation between their structure and
their permeability. As our approach reduces to extracting cycles

Admissible driver
nodes

Target nodes Untouchable nodes

7

3 6

2

1 4

5

7
3

2

1

u1 u1

4

5

6 3

2

1 4

5

6
7

a b c

Figure 2 | Schematic representation of our method. (a) The original graph of the network. (b) Construction of the augmented graph. (c) Optimal

cycle partition returned by the ILP.
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that can be selected as drivers. Blue circles represent the nodes of the set

F, that is, those that are targets and must be encompassed in the set C.

Magenta circles represent the nodes of the set C, that is, those that are

untouchable and must not be perturbed by the control action.dfigure.
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from a graph, one could expect that networks with high average
degree hki are highly permeable. Surprisingly, we observed that
real networks with similar hki can exhibit large variability in their
permeability. Moreover, we find that m is well explained by the
parameter

b ¼ 1�

P
i

ki
in� ki

out

�� ��
2L

2 0; 1½ � ð4Þ

where L is the number of edges of the network. The parameter b
takes the value of 1 for perfectly balanced graphs, that is, graphs
for which the indegree kin of each node is the same as its
outdegree kout. As shown in Fig. 3b, b is correlated (r¼ 0.79)
with m. This is consistent with the theoretical background for our
method (provided by Hosoe’s theorem34) as a cycle partition of a
network is a balanced digraph. It is also coherent with the fact
that regular networks with hkiZ1 and connected undirected
networks, both characterized by balanced graphs, can be made
controllable by means of only one control signal20.
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To understand the impact of untouchable nodes, we evaluated
the difference between the network permeability m and the
conditioned permeability m(C). We found that these impurities
tend to jeopardize our ability to control a network, as a small set
of untouchable nodes can be responsible for a large loss of
permeability. This phenomenon is shown in Fig. 3c, where the
correlation (r¼ 0.81) between b and the loss of permeability
Dm¼m� m(C) resulting from the addition of untouchable nodes
can be appreciated.

In performing extensive numerical analyses, we kept track of
the structural properties of the nodes of the set C Mð Þ and of the
set of selected driver nodes OD(M) as we varied M. We found
that both these sets are characterized by signatures. The first
observation is that the nodes of C Mð Þ have higher degree than
those of its complement �C Mð Þ as shown in Fig. 4a The second
observation is that the nodes of OD(M) typically exhibit low
indegree and high outdegree as shown in Fig. 4b for the Small
World and Griffith citation network. We observe that for small
values of M, nodes with low indegree are selected as drivers.
When these are numerous, those with high outdegree are
selected first.

These findings have immediate practical relevance. First, the
signature of the nodes of C Mð Þ points out that targeting nodes
with low degree requires a large number of drivers, whereas
targeting nodes with high degree is feasible with a small set OD.
On the other hand, the signature of the nodes of OD(M) indicates
that when lacking the ability to conduct the permeability analysis
described above, a good criterion for the selection of the driver
nodes is to choose, among the nodes with low indegree, those
with high outdegree.

Altogether, our findings provide tools for easily assessing how
challenging it is to fulfil given controllability requirements. If a
network is characterized by a low value of b, the set of admissible
nodes does not encompass nodes with low indegree and high
outdegree, and the nodes to be targeted have small degree k, then
even fulfilling the mildest controllability requirements might be a
chimera. Conversely, high controllability goals can be achieved
when these conditions are not verified.

Our results show that a large set of controllable nodes can
be obtained with a reasonable amount of drivers only when
the network structure determines a high permeability. When
does this reasonable amount reduce to a handful of nodes,
thus knocking down the control costs? We find the answer
to this question by classifying networks on the basis of
two measures, their permeability m and the maximum centrality
C 1ð Þ of their nodes. It follows that networks can be divided
into the following three classes (Fig. 5): the first encompassing
highly permeable networks (m40.5) having at least a node
with high centrality C 1ð Þj j40:5ð Þ, the second encompassing
highly permeable networks that do not have a node with high
centrality, and the third class encompassing impermeable
networks that do not have a node with high centrality. The
networks in the first class are such that a large set of controllable
nodes C can be obtained inexpensively, that is, by using only a
handful of drivers. For networks belonging to the second class, a
large C can still be obtained, but at a higher price, as C 1ð Þ is small
but increases rapidly with the number of drivers. Finally,
networks in the third class tend to be impermeable to control
signals regardless of M. For these networks, only mild contoll-
ability requirements can be fulfilled and at a high price, and the
role played by the sets of target, admissible and untouchable
nodes is critical. Figure 5 also shows that the topology of
networks that share the same functions (in particular, protein
networks, metabolic networks and electric circuits) tends to fall in
the same class.

Discussion
In general, the control of a complex dynamical network can be
performed in several ways by selecting, among its nodes, the ones
in which the control signals are injected. When the number of
driver nodes is limited by practical constraints, the problem arises
of how to select them in order to allow the control signals to
permeate through the network as deeply as possible. By taking
this new perspective, we develop a geometrical mapping of this
problem for large linear dynamical networks with arbitrary
connectivity. This mapping allows us to find the optimal selection
of the driver nodes by solving an ILP in which constraints on
driver, target and untouchable nodes can also be considered.
Leveraging the possibility of solving such a problem for increasing
numbers of drivers, we gain insight in how the topological
structure of a network can facilitate or prevent the diffusion of the
control signals. To measure the structural propensity of a network
to be controlled, in part or in toto, we introduce the structural
permeability of complex networks to control signals.

Overcoming the framework of complete controllability in
favour of limited and well-defined controllability goals, enables us
to numerically investigate the permeability of a number of both
real and synthetic networks, by also taking into account the role
of driver, target and untouchable nodes. We observe that the
network permeability well correlates with an easily computable
network topological parameter and we are able to extract
signatures that characterize both the selected driver nodes and
those in the controllable set. Finally, on the basis of the
permeability index and the control centrality, we propose a
taxonomy of all the networks considered in the paper.

Methods
Analysis of artificial topologies. Scale-free topologies were
generated by means of the directed version of the so-called static
model38. All numerical results on artificial networks are averaged
over 100 topologies of 1,000 nodes each.

Analysis of real networks. A complete list of the topologies of
real networks analysed is available in Supplementary Note 4. The
results of the evaluation of the loss of permeability in the presence
of untouchable nodes are relative to a random selection, for each
real network analysed, of 5% of its nodes to be untouchable.
Results are averaged over 50 different random selections of
untouchable nodes per network. We also used slightly different
selection criteria, varying the size of the set C and the average
degree of its nodes, and recorded qualitatively similar results
as detailed in Supplementary Note 5. For networks of finite
dimensions, m has been computed approximating the integral (3)
by means of the trapezoidal method.

ILP solver. The numerical analysis was conducted on the Matlab
platform by using the ILP solver intlinprog. We emphasize
that the method we propose can be implemented also on other
available commercial software.
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