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The synchronization of coupled oscillators is a fascinating mani-
festation of self-organization that nature uses to orchestrate es-
sential processes of life, such as the beating of the heart. Although
it was long thought that synchrony and disorder were mutually
exclusive steady states for a network of identical oscillators, nu-
merous theoretical studies in recent years have revealed the
intriguing possibility of “chimera states,” in which the symmetry
of the oscillator population is broken into a synchronous part and
an asynchronous part. However, a striking lack of empirical evi-
dence raises the question of whether chimeras are indeed charac-
teristic of natural systems. This calls for a palpable realization of
chimera states without any fine-tuning, fromwhich physical mech-
anisms underlying their emergence can be uncovered. Here, we
devise a simple experiment with mechanical oscillators coupled in
a hierarchical network to show that chimeras emerge naturally
from a competition between two antagonistic synchronization
patterns. We identify a wide spectrum of complex states, encom-
passing and extending the set of previously described chimeras.
Our mathematical model shows that the self-organization ob-
served in our experiments is controlled by elementary dynamical
equations from mechanics that are ubiquitous in many natural
and technological systems. The symmetry-breaking mechanism re-
vealed by our experiments may thus be prevalent in systems exhibit-
ing collective behavior, such as power grids, optomechanical crystals,
or cells communicating via quorum sensing in microbial populations.
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In 1665, Christiaan Huygens observed that two pendulum clocks
suspended on a beam always ended up swinging in exact anti-

phase motion (1) regardless of each pendulum’s initial displace-
ment. He explained this self-emergent synchronization as re-
sulting from the coupling between the clocks, which was mediated
by vibrations traveling across the beam. Huygens’ serendipitous
discovery has inspired many studies to establish that self-emergent
synchronization is a central process to a spectacular variety of
natural systems, including the beating of the heart (2), flashing
fireflies (3), pedestrians on a bridge locking their gait (4), cir-
cadian clocks in the brain (5), superconducting Josephson junc-
tions (6), chemical oscillations (7, 8), metabolic oscillations in
yeast cells (9), and life cycles of phytoplankton (10).
Ten years ago, the dichotomy between synchrony and disorder

was challenged by a theoretical study revealing that a population
of identical coupled oscillators can attain a state where one part
synchronizes and the other oscillates incoherently (11–23). These
“chimera states” (13) emerge when the oscillators are coupled
nonlocally (i.e., the coupling strength decays with distance be-
tween oscillators), which is a realistic scenario in many situations,
including Josephson junction arrays (24) or ocular dominance
stripes (25). Chimera states are counterintuitive because they
occur even when units are identical and coupled symmetrically;
however, with local or global coupling, identical oscillators ei-
ther synchronize or oscillate incoherently but never do both
simultaneously.
Since their discovery, numerous analytical studies (13, 14, 16–

18) involving different network topologies (14, 19, 20) and var-
ious sources of random perturbations (21, 22) have established

chimeras as a robust theoretical concept and suggest that they
exist in complex systems in nature with nonlocal interactions.
However, experimental evidence for chimeras has been partic-
ularly sparse so far, and it has only been achieved recently via
computer-controlled feedback (26, 27). This raises the question of
whether chimeras can only be produced under very special con-
ditions or whether they arise via generic physical mechanisms.
Uncovering such physical mechanisms requires analytically trac-
table experiments with direct analogs to natural systems.
Our mechanical experiment shows that chimera states emerge

naturally without the need to fine-tune interactions. We imple-
ment the simplest form of nonlocal coupling that can be achieved
using a hierarchical network with two subpopulations (14, 15):
Within each subpopulation, oscillators are coupled strongly,
whereas the coupling strength between the two subpopulations
is weaker. We place N identical metronomes (28) with a nominal
beating frequency f on two swings, which can move freely in a
plane (Fig. 1 and Figs. S1–S3). Oscillators within one pop-
ulation are coupled strongly by the motion of the swing onto
which the metronomes are attached. As f is increased, more
momentum is transferred to the swing, effectively leading to
a stronger coupling among the metronomes. A single swing fol-
lows a phase transition from a disordered state to a synchronized
state as the coupling within the population increases (28, 29).
This mimics the synchronization of the gait of pedestrians on
the Millennium Bridge (4) wobbling under the pedestrians’
feet. In our setup, emergent synchronization can be perceived
both aurally (unison ticking) and visually (coherent motion of
pendula). Finally, the weaker coupling between the two swings
is achieved by tunable steel springs with an effective strength κ.

Results
For nonzero spring coupling, κ> 0, we observe a broad range of
parameters in which chimeras (Fig. 1C and Movie S1) and fur-
ther partially synchronized states emerge. To explore this com-
plex behavior quantitatively, we measure the metronomes’ oscil-
lation phase θk, their average frequencies ωk, and the complex
order parameter ZpðtÞ=N−1PN

k=1e
i½θðpÞk ðtÞ−θsynðtÞ$, where p= 1; 2

denotes the left or right population and θsyn is the average phase
of the synchronous population (jZj quantifies the degree of syn-
chronization: jZj≈ 0 for incoherent motion and jZj≈ 1 for syn-
chronous motion).
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To investigate where chimeras emerge in parameter space, we
have systematically varied the effective spring coupling, κ, and the
nominal metronome frequency, f, while ensuring that the metro-
nomes on uncoupled swings synchronize. The long-term behavior
of the system is studied by preparing the experiments with several
initial conditions (SI Text) (12–14): (i) Both populations are de-
synchronized [desync-desync (DD)], or (ii) one population is syn-
chronous and the other is desynchronized [sync-desync (SD) and
desync-sync (DS), respectively]. We start with a fixed frequency
and gradually decrease κ. For sufficiently large κ, the spring is
effectively so stiff that the two swings act like one and metro-
nomes evolve to a synchronized in-phase (IP) motion, such that
the complex order parameters overlap with jZ1;2j≈ 1 (Fig. 2A
and Movie S2). For low κ, we observe that the two metronome
populations settle into synchronized antiphase (AP) motion, where
the order parameters and phases are separated in the complex
plane by 180° with jZ1;2j≈ 1 (Fig. 2C and Movie S3). These syn-
chronization modes correspond to the two eigenmodes of the
swing/spring system. For intermediate κ, however, we observe chi-
meras (Fig. 2B and Movie S1). Whereas one of the metronome
populations is fully synchronized with jZj≈ 1, the other popu-
lation is desynchronized. The trajectory of the order parameter
of the desynchronized population describes a cloud in the com-
plex plane with jZj< 1. The phases of the desynchronized pop-
ulation are spread over the entire interval ½−π; π$, and the time-
averaged frequencies are nonidentical. As we increase κ, numerical
simulations (see below) reveal that this cloud bifurcates off the
AP mode, traverses the complex plane, and eventually collapses
into the stable IP synchronization mode (see Fig. 4B). None of the
metronomes in the desynchronized population is locked to the
synchronized population either, demonstrating truly unlocked
motion. Chimeras were consistently found for both SD and DS
symmetries, ruling out chimeras as a result of asymmetry or pinning

due to heterogeneities. Further, chimeras were not transient, such
that the desynchronized population remained desynchronized (i.e.,
a DS or SD configuration remained for the entire duration of the
experiment, typically lasting for up to 1,500 oscillation cycles).
Chimeras are sandwiched in a region between AP and IP modes

consistently across various metronome frequencies (Fig. 3A).
Remarkably, we also find other asynchronous states, including
phase-clustered states (30) (Fig. S4); a “partial chimera,” where
only a fraction of the asynchronous population is frequency-locked;
and states with oscillation death (28, 31). Additionally, we observe
a region of bistability of chimeras and AP synchronized motion.
Closer to the edge of the IP region, we find a narrow slice where
neither of the metronome populations can achieve synchrony (DD
state): Even when initialized with SD or DS conditions, the system
loses synchrony completely after a transient time.
We have developed a mathematical model (SI Text, Fig. S5,

and Table S1) that we simulated to corroborate our experi-
mental findings and to test situations that cannot be achieved
experimentally, such as large metronome populations or per-
fectly identical frequencies. The two swings are parametrized by
their displacement angles from equilibrium positions, Φ and Ψ;
the metronome pendula are parametrized by the displacement
angles ϕi and ψ i, respectively. The metronomes are described as
self-sustained oscillators with (harmonic) eigenfrequency ω,
damping μm with an amplitude-dependent nonlinearity DðϕiÞ due
to the escapement (28, 29, 31):

€ϕi + sinϕi + μm _ϕi  DðϕiÞ+
ω2

Ω2 cosϕi  
€Φ = 0; [1]

where the terms represent (from left to right) pendulum inertia,
gravitational force of restitution, damping, and the driving swing
inertia, and the dots represent derivatives with respective to time

A

B C

Fig. 1. Experimental setup and measurements. Two swings are loaded with N metronomes each and coupled with adjustable springs. (A) Swing and
metronome displacements are measured by digital tracking of UV fluorescent spots placed on the pendula and swings. (B) N= 1 : Metronomes synchronize in
AP or IP motion. (C) N= 15 : Symmetry-breaking chimera states with one metronome population synchronized and the other desynchronized, or vice versa.
The displacement angles of the pendula on the left and right swings are ϕi and ψ i , respectively.
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τ = ωt. In turn, the swings of length L are described as harmonic
oscillators with eigenfrequency Ω=

ffiffiffiffiffiffiffiffi
g=L

p
and damping μs. A

swing is driven by the metronomes and the neighboring swing,
to which it is coupled with a spring of strength κ:

€Φ +Ω2Φ− κðΨ−ΦÞ+ μs _Φ+
x0
L

XN

k= 1

∂ττ   sinϕk = 0; [2]

where terms (from left to right) are swing inertia, force of res-
titution, spring coupling, friction, and the inertia summed over

all metronomes on the same swing. Whereas κ determines the
interpopulation coupling strength, the global coupling strength
depends on the ratio of the metronome frequency and the
swing eigenfrequency, ðω=ΩÞ2. Using conditions similar to our
experiments (but without frequency spread), chimeras obtained
from simulations (Fig. 2 D and E) and the resulting phase di-
agram (Fig. 3C) agree qualitatively very well with experiments
(quantitative differences are likely due to the ad hoc metro-
nome model and potential discrepancies in parametrization
as discussed in SI Text and Fig. S6). Bistability of fully synchro-
nized (SS) and symmetry-breaking (SD and DS) states is a

A B C D

E

Fig. 2. Chimeras emerge with intermediate spring rate κ in a “competition” zone between two fully synchronous modes. With decreasing κ, we observe
a transition from IP synchronization (A), over chimeras (B), to AP synchronization (C). The transition region also exhibits phase-clustered states and partial
chimeras. (D and E) Simulations share all features of the experimental chimera. Data related to the synchronous and asynchronous populations are coded in
blue and red, respectively. Angular frequencies are normalized with the average frequency of the synchronized population ωsyn. bpm, beats per minute.

A B C

Fig. 3. Phase diagrams from experiments for N= 15 (A) and N= 1 (B) metronome(s) per swing and from numerical simulations with N= 15 metronomes (C)
with metronome frequency f vs. effective spring coupling κ= k=Mðl=LÞ2. IP (red) and AP (blue) synchronization modes surround the chimera parameter region
C (green) and the bistable AP/C region with chimeras and AP synchronization. Symbols represent data points (color shadings are guides only). Region C,
centered around the resonance curve of the swings’ AP mode (yellow dashed line) defined by f · π=60=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 + 2κ

p
, exhibits chimeras and other partially

synchronized states. The bistable region AP/C exhibits chimera-like and synchronized AP states; DD represents a region where neither population synchronizes
fully. For N= 1, we find a similar region of unlocked motion, where the metronomes never synchronize. The phase diagram from numerical simulations for
identical metronomes exhibits the same qualitative structure as the experiment, except that the width of region C is smaller (SI Text). Parameter space in
experiments and simulations was sampled with varying spring coupling κ for metronome frequencies f = 138, f = 160, f = 184, and f = 208 bpm.

Martens et al. PNAS Early Edition | 3 of 5

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302880110/-/DCSupplemental/pnas.201302880SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302880110/-/DCSupplemental/pnas.201302880SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302880110/-/DCSupplemental/pnas.201302880SI.pdf?targetid=nameddest=STXT


hallmark of the chimera instability (14), which is in distinct con-
trast to other symmetry-breaking scenarios mediated via super-
critical transitions (13). It is therefore interesting to note that
chimera states may coexist with AP synchronization modes in
certain regions of the bifurcation diagram (Fig. 3 A and C).
Notably, when metronomes on each swing synchronize in an

IP or AP mode, one envisages that the swings, together with the
attached metronomes, collectively behave like two “giant” metro-
nomes. These modes correspond to excitations of the eigenmodes
of the swing pair with frequencies Ω (IP) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ+Ω2

p
(AP).

Indeed, for N = 1 metronome per swing (Fig. 1B), we find that
due to momentum transfer, the swing strictly follows the motion
of the attached metronome pendulum: The system behaves like
Huygens’ experiment (i.e., with clocks replaced by metronomes).
The metronomes settle into AP and IP synchronization modes for
weak and strong coupling κ, respectively, as in modern recon-
structions of Huygens’ setup (31). Additionally, we find a small
region where unlocked motion is possible (Fig. 3B).
Generalizing Huygens’ experiment by adding internal degrees

of freedom (i.e., metronomes) on each swing allows for much
richer complex dynamics. A rich tapestry of complex states is un-
covered (Fig. 4) in a transition from the AP to IP synchronization
as the spring coupling κ is increased. In addition to chimeras, these
include phase-clustered states (26): a “clustered chimera,” where
oscillators are attracted to a clustered state but cannot quite attain
frequency locking; a partial chimera, where the asynchronous
population appears partially locked; and a quasiperiodic chimera
(17, 18). The situation is aptly captured by the notion of “more is
different” (32): Additional internal degrees of freedom open
a door to unexpected complex behavior [i.e., unanticipated by
mere extrapolation of simple collective behavior (32)]. Using
Huygens’ term of the “odd sympathy of clocks” (1) to denote
synchrony, the observed asymmetrical behavior might be de-
scribed as an “antipathetic sympathy of clocks.”
Chimeras and other partly synchronous states emerge as a

competition in an intermediate regime between IP and AP syn-
chronization modes: As a result, both modes are destroyed, such
that only one of the giant metronomes wins the tug-of-war and

remains synchronous, whereas the other one is broken apart. The
resulting asymmetry is characterized by the domination of one
giant over the other [i.e., the synchronous population forces the
asynchronous population (33), acting like an energy sink]. Re-
markably, we find that the parameter region with chimera-like
behavior is centered around the resonance curve related to the
swings’ antiphase eigenmode (Fig. 3A): Near resonance, the fabric
of uniform synchronization is torn.

Discussion
By devising a mechanical system composed of just two swings, a
spring, and a number of metronomes (28), we have extended
Huygen’s original experiment (1, 31) and demonstrated how chi-
meras emerge in the framework of classical mechanics. Recent
experiments (26, 27) could only produce chimeras by exploiting
sophisticated computer-controlled feedback, and the time delay
of the coupling had to be carefully crafted in addition to tuning its
strength; by contrast, in our realization, chimeras emerge gener-
ically using merely a spring, without any need to adjust parameters
other than the coupling strength. Notably, our setup is composed
of basic mechanical elements, such as inertia, friction, and spring
rate, which have exact or generalized analogs in other areas, such
as electronic (6, 34), optomechanical (35), chemical (7), and
icrobial systems or genetic circuits (36). The model we propose
shows that the complex synchronization patterns found in the
experiments are described by elementary dynamical processes
that occur in diverse natural and technological settings. This
raises the question of whether chimeras may have already been
observed in such systems but remained unrecognized as such. For
instance, our model equations translate directly to recent theo-
retical studies of synchronization in power grids (37–39) and
optomechanical crystals (40, 41). Consequently, as power grid
network topologies evolve to incorporate growing sources of re-
newable power, the resulting decentralized, hierarchical networks
(37) may be threatened by chimera states, which could lead to
large-scale partial blackouts and unexpected behavior. On the
other hand, we envision that multistable patterns of synchrony
and desynchrony (19) can be exploited to build on-chip memories

Fig. 4. Traversal of order parameter cloud with increasing spring coupling κ. A transition through a rich spectrum of chimera states becomes evident.
Numerical simulations are carried out with N= 64 metronomes (for parameters see SI Text). As κ increases, the complex order parameter Zp bifurcates off from
the AP mode at 180° and travels to the right, where it snaps into the IP synchronization mode at 0°. (Top) Complex order parameter Z is displayed. (Middle)
Magnitude jZpj is displayed. (Bottom) Angular frequencies, normalized with the average frequency of the synchronized population ωsyn, are displayed. The
synchronized population is shown in blue, and the desynchronized population is shown in red.
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and computers based on arrays of micromechanical devices (35).
We expect the physical mechanisms that we uncovered here will
have important and far-reaching ramifications in the design and
use of such technologies and in understanding chimera states
in nature.

Materials and Methods
Experiments. Two swings are suspended by four light hollow aluminum rods
with a length of 50 cm (outer and inner diameters are 10 mm and 9 mm,
respectively). The swings are attached to the rods via low-friction ball
bearings to ensure smooth motion of the swings. The upper rod ends are
attached in the same way on a large rigid support frame. The distance be-
tween the support frame and the board is set to L= 22 cm. The motion of the
two swings is constrained so that it can occur, to high precision, only in the
x-y plane. Each swing is made of a 500-mm × 600-mm × 1-mm perforated
aluminum plate. The total weight of each plate is 915 ± 4 g. Each swing is
loaded with N= 15 metronomes with a weight of 94 g. The total weight of
the swing and metronomes is M= 2:3 kg. Two precision steel springs
(Febrotec GmbH; spring constant k = 34 N/m) are firmly attached with
clamps to the two adjacent swing rods (Fig. 1A) at a distance l above the
pivot point. Adjusting the spring lever l changes the effective spring
strength κ= k=Mðl=LÞ2. An experiment is started with a careful symmetry
check of the system, by ensuring that the initial friction μs is the same on

both swings. The metronome’s nominal frequency is set to identical values
ωn. We then connect the two swings with the spring firmly set at a dis-
tance l above the pivot points. The motion of the metronomes and the
swings is video-recorded under UV illumination using a Nikon D90 camera
mounted with an 18- to 55-mm DX format lens. Each experiment is re-
peated with inverted roles of the swings (i.e., a DS experiment is followed
by an SD experiment), such that the left-to-right symmetry is checked
thoroughly.

Simulations. Simulations were carried out with identical metronomes until
a stationary state was reached (typically, ∼2,000 oscillation cycles). The phase
diagram (Fig. 3C) was obtained by fixing the nominal metronome frequency f
and then gradually increasing the effective spring rate κ (using similar
parameters as in the experiment and N= 15 metronomes per swing). For each
parameter step, synchronous IP and AP states were continued quasiadiabati-
cally, whereas simulations resulting in chimera-like states were reinitialized
with randomized phases in one of the populations (SI Text).

ACKNOWLEDGMENTS. We thank H. Stone, S. Strogatz, K. Showalter,
A. Pikovsky, M. Rosenblum, S. Herminghaus, and L. Goehring for useful
comments, and H. J. Martens for valuable discussions on the experimental
design. We express deep gratitude to Udo Krafft for his assistance with the
experimental setup. This work was partly supported by a grant from the
Human Frontier Science Program (to S.T.).

1. Huygens C (1967) Oeuvres complètes (Swets & Zeitlinger Publishers, Amsterdam),
Vol 15.

2. Michaels DC, Matyas EP, Jalife J (1987) Mechanisms of sinoatrial pacemaker syn-
chronization: A new hypothesis. Circ Res 61(5):704–714.

3. Buck J, Buck E (1968) Mechanism of rhythmic synchronous flashing of fireflies. Fireflies
of Southeast Asia may use anticipatory time-measuring in synchronizing their flash-
ing. Science 159(3821):1319–1327.

4. Strogatz SH, Abrams DM, McRobie A, Eckhardt B, Ott E (2005) Theoretical mechanics:
Crowd synchrony on the Millennium Bridge. Nature 438(7064):43–44.

5. Liu C, Weaver DR, Strogatz SH, Reppert SM (1997) Cellular construction of a circadian
clock: Period determination in the suprachiasmatic nuclei. Cell 91(6):855–860.

6. Wiesenfeld K, Colet P, Strogatz S (1998) Frequency locking in Josephson arrays:
Connection with the Kuramoto model. Phys Rev E Stat Phys Plasmas Fluids Relat In-
terdiscip Topics 57(2):1563–1569.

7. Kiss IZ, Zhai Y, Hudson JL (2002) Emerging coherence in a population of chemical
oscillators. Science 296(5573):1676–1678.

8. Taylor AF, Tinsley MR, Wang F, Huang Z, Showalter K (2009) Dynamical quorum
sensing and synchronization in large populations of chemical oscillators. Science
323(5914):614–617.

9. Danø S, Sørensen PG, Hynne F (1999) Sustained oscillations in living cells. Nature
402(6759):320–322.

10. Massie TM, Blasius B, Weithoff G, Gaedke U, Fussmann GF (2010) Cycles, phase syn-
chronization, and entrainment in single-species phytoplankton populations. Proc Natl
Acad Sci USA 107(9):4236–4241.

11. Motter AE (2010) Spontaneous synchrony breaking. Nat Phys 6(3):164–165.
12. Kuramoto Y, Battogtokh D (2002) Coexistence of coherence and incoherence in

nonlocally coupled phase oscillators. Nonlinear Phenomena in Complex Systems
5(4):380–385.

13. Abrams DM, Strogatz SH (2004) Chimera states for coupled oscillators. Phys Rev Lett
93(17):174102.

14. Abrams DM, Mirollo R, Strogatz SH, Wiley DA (2008) Solvable model for chimera
states of coupled oscillators. Phys Rev Lett 101(8):084103.

15. Montbrió E, Kurths J, Blasius B (2004) Synchronization of two interacting populations
of oscillators. Phys Rev E Stat Nonlin Soft Matter Phys 70(5 Pt 2):056125.

16. Omel’chenko OE, Maistrenko YL, Tass PA (2008) Chimera states: The natural link
between coherence and incoherence. Phys Rev Lett 100(4):044105.

17. Pikovsky A, Rosenblum M (2008) Partially integrable dynamics of hierarchical pop-
ulations of coupled oscillators. Phys Rev Lett 101(26):264103.

18. Bordyugov G, Pikovsky A, Rosenblum M (2010) Self-emerging and turbulent chimeras
in oscillator chains. Phys Rev E Stat Nonlin Soft Matter Phys 82(3 Pt 2):035205.

19. Martens EA (2010) Bistable chimera attractors on a triangular network of oscillator
populations. Phys Rev E Stat Nonlin Soft Matter Phys 82(1 Pt 2):016216.

20. Martens EA, Laing CR, Strogatz SH (2010) Solvable model of spiral wave chimeras.
Phys Rev Lett 104(4):044101.

21. Laing CR (2009) The dynamics of chimera states in heterogeneous Kuramoto net-
works. Physica D 238(16):1569–1588.

22. Laing CR, Rajendran K, Kevrekidis IG (2012) Chimeras in random non-complete net-
works of phase oscillators. Chaos: An interdisciplinary. Journal of Nonlinear Science
22(1):013132.

23. Olmi S, Politi A, Torcini A (2010) Collective chaos in pulse-coupled neural networks.
Europhys Lett 92(6):60007.

24. Phillips JR, White J, Orlando TP, Orlando TP, van der Zant HS (1993) Influence of in-
duced magnetic fields on the static properties of Josephson-junction arrays. Phys Rev
B Condens Matter 47(9):5219–5229.

25. Swindale NV (1980) A model for the formation of ocular dominance stripes. Proc R Soc
Lond B Biol Sci 208(1171):243–264.

26. Tinsley MR, Nkomo S, Showalter K (2012) Chimera and phase-cluster states in pop-
ulations of coupled chemical oscillators. Nat Phys 8(8):662–665.

27. Hagerstrom AM, et al. (2012) Experimental observation of chimeras in coupled-map
lattices. Nat Phys 8(8):658–661.

28. Pantaleone J (2002) Synchronization of metronomes. Am J Phys 70(10):992–1000.
29. Ulrichs H, Mann A, Parlitz U (2009) Synchronization and chaotic dynamics of coupled

mechanical metronomes. Chaos 19(4):043120.
30. Golomb D, Hansel D, Shraiman B, Sompolinsky H (1992) Clustering in globally coupled

phase oscillators. Phys Rev A 45(6):3516–3530.
31. Bennett M, Schatz M, Wiesenfeld K (2002) Huygen’s clocks. Proc R Soc Lond A Math

Phys Sci 458(2019):563–579.
32. Anderson PW (1972) More is different. Science 177(4047):393–396.
33. Childs LM, Strogatz SH (2008) Stability diagram for the forced Kuramoto model.

Chaos 18(4):043128.
34. Temirbayev A, Zhanabaev Z, Tarasov S, Ponomarenko V, Rosenblum M (2012) Ex-

periments on oscillator ensembles with global nonlinear coupling. Phys Rev E Stat
Nonlin Soft Matter Phys 85(1 Pt 2):015204.

35. Zhang M, et al. (2012) Synchronization of micromechanical oscillators using light. Phys
Rev Lett 109(23):233906.

36. Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum
of genetic clocks. Nature 463(7279):326–330.

37. Rohden M, Sorge A, Timme M, Witthaut D (2012) Self-organized synchronization in
decentralized power grids. Phys Rev Lett 109(6):064101.

38. Dörfler F, Chertkov M, Bullo F (2013) Synchronization in complex oscillator networks
and smart grids. Proc Natl Acad Sci USA 110(6):2005–2010.

39. Motter AE, Myers SA, Anghel M, Nishikawa T (2013) Spontaneous synchrony in
power-grid networks. Nat Phys 9(1):191–197.

40. Eichenfield M, Chan J, Camacho RM, Vahala KJ, Painter O (2009) Optomechanical
crystals. Nature 462(7269):78–82.

41. Heinrich GH, Ludwig M, Qian J, Kubala B, Marquardt F (2011) Collective dynamics in
optomechanical arrays. Phys Rev Lett 107(4):043603.

Martens et al. PNAS Early Edition | 5 of 5

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302880110/-/DCSupplemental/pnas.201302880SI.pdf?targetid=nameddest=STXT


Supporting Information
Martens et al. 10.1073/pnas.1302880110
SI Text

Experimental Setup
Swing. We briefly describe the experimental setup shown in Fig.
S1. Two swings are suspended by four light hollow aluminum rods
with a length of 50 cm (outer and inner diameters are 10 mm and
9 mm, respectively). The swings are attached to the rods via low-
friction ball bearings to ensure smooth motion of the swings. The
upper ends of the rods are attached in the same way on a large
rigid support frame. The distance between the support frame and
the board is set to L= 22  cm. The motion of the two swings (A
and B) is constrained so that it (to high precision) can only occur
in the ðx; yÞ plane along the arc lengths SA =LΨ and SB =LΦ,
respectively. Each swing is made of a 500-mm × 600-mm × 1-mm
perforated aluminum plate. To make the plates stiff and flat,
they are bent at the edges, and aluminum tubes of square cross-
section are placed underneath the board for further support. The
total mass of each plate is ms = 915  ± 4 g.
Each swing is loaded with N = 15 metronomes of mass mm =

m+mbox = 93  g, where m= 28  g is the mass of the entire met-
ronome pendulum (composed of a larger rigid part, mp = 23  g,
and a smaller adjustable bob, mbob = 5  g, to set the frequency);
mbox = 65  g is the mass of the metronome’s box (Fig. S3). Thus,
the total mass of swing and metronomes amounts to M =ms +
N ×mm ≈ 2:3  kg.
The adjacent swing rods (two pairs at the front and back sides of

the swing) are connected with two precision metallic springs (the
back pair of rods is shown in Fig. S2A). The pivots of two adjacent
rods are set to a distance of Lp = 20  cm. The springs used in our
study (Febrotec GmbH) have the following characteristics: out-
side diameter of 6.14 mm, wire diameter of 0.46 mm, unloaded
length of 38.1 mm, preload force of 0.41 N, and force at a length
of 152.2 mm = 4.37 N. For a single spring, we measured a rate of
34 N·m−1 (Fig. S2B); thus, the total spring rate yielded by the two
springs used in our setup is k= 68 N·m−1. Both springs are at-
tached to plastic clamps at both ends (Fig. S2A); the clamps are
firmly attached to the rods at distance l above the pivot point.
The clamps can be slid up and down while still being firmly fixed
to the rods during an experiment. Thereby, we change the spring
lever l and the associated torque (i.e., we effectively tune the
spring coupling strength).
Swing equilibrium angle. The swing positions Φ, Ψ can be parame-
trized with small-amplitude variations Φ′, Ψ′ around their equi-
librium angles Φ*, Ψ* ; that is:

Φ′ðtÞ=ΦðtÞ−Φ*; [S1]

Ψ′ðtÞ=ΨðtÞ−Ψ*; [S2]

for which the equilibrium angles are ∼ 18 . . . 28. Typical equilibrium
angles with varying spring leverage l are summarized in Table S1;
their magnitude is small, which allows us to make the small-angle
approximations described below. The equilibrium torque bal-
ance defines an equilibrium spring force, ~F*

s :

l  ~F*
s = −L Mg  sinΦ*: [S3]

Note that Ψ* = −Φ* < 0 due to the symmetry of the setup.
Swing friction. To estimate the friction coefficient in the swing on
an experimental basis, we observe the equation of motion for
one swing:

∂2t Φ= −
g
L
  sin Φ−

νs
M

  ∂tΦ: [S4]

The eigenfrequency of the swing is Ω=
ffiffiffiffiffiffiffiffi
g=L

p
≈ 6:67  rad·s−1.

For small angles sinΦ≈Φ, we obtain the solution

L ΦðtÞ=L Φ0   e−νs   t=ð2 MÞ   cos
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 − ðνs=4MÞ2
q

  t
#
: [S5]

We infer the friction coefficient νs by measuring the evolution
of the amplitude of the swing L ΦðtÞ, initially removed from its
equilibrium position by an angle Φð0Þ=Φ0 and released without
any celerity, ∂tΦð0Þ= 0. By observing the decaying amplitude
LΦðtÞ over a few minutes and comparing the data with Eq. S5,
we find that, typically, νs ∼ 0:1 kg=s.

Metronome. The working principle behind the metronome mech-
anism is identical to Huygens’ pendulum clocks (1), except that
the escapement in the metronome is driven by a spring rather
than a mass pulled by gravity. Although friction inherent to the
mechanical elements attenuates large-amplitude oscillations to-
ward the nominal metronome oscillation amplitude, small pen-
dulum oscillations are amplified by the spring energy feeding the
pendulum via the escapement mechanism. Together, this gives the
metronome the characteristics of a self-sustained oscillator (2).
In our experiment, we use Wittner Taktell Supermini metro-

nomes as utilized in previous studies (2), covering a frequency
range of 40 (largo) to 208 (prestissimo) beats per minute (bpm),
with a standard deviation of relative frequencies of ∼1%. Each
metronome has physical dimensions of 30 mm × 37 mm × 104 mm
and mass mm = 93 g. When fully wound up, each metronome
ticks for a duration of ∼20 min (depending on the adjusted fre-
quency f), corresponding to ∼1,500 oscillation cycles.
During operation, each metronome is firmly attached on the

swing plate with double-sided Scotch tape; the standard position
of each metronome is marked with a pen on the swing boards,
such that we maintain the same arrangement of metronomes on
the plate for each experiment. The total mass of the swing isM =
ms +N ×mm = 2:3kg. To record the angle displacement of each
metronome, ϕi and ψ i, from the swings A and B, respectively,
small round stickers with a diameter of ∼10 mm are attached at
the upper part of the rod. The stickers are UV fluorescent,
which allows digital tracking of the metronome motion. We
verified that their addition (negligible mass) does not change
the metronome characteristics relevant to the observations
made here.
The metronome may be conceptually split into two parts: (i)

the rigid, nonmoving box of mass mbox containing the spring and
escapement mechanism driving the pendulum and (ii) the os-
cillating pendulum of mass mp. It is composed of a rod with
a weight attached on the lower end (the counterweight); on the
top end, there is a second weight (bob) that can be moved up and
down (Fig. S3).
Frequency. The only control parameter of the metronome is its
beating frequency. It is adjusted by sliding the bob up and down,
thereby altering the first (center mass, rcm) and second moments
of the metronome pendulum, I.
The (quasi-)linear eigenfrequency ω of the metronome (Eqs.

S31 and S32) is not exactly equal to the nominal frequency f of the
nonlinear oscillator. The relationship between the two frequencies
can be estimated by considering higher order expansions of the
sine term and the van der Pol term in the governing Eq. S28. A
first-order estimate of the nominal frequency is given by (2, 3)
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ωn ≈

"

1−
$
θ0
2

%2
#

ω: [S6]

The angular frequencies ω and ωn are measured in radians per
second rather than in beats per minute. The conversion between
the two units is given via ω= f · π=60 (two beats correspond to
one oscillation period). Half of the standard displacement angle
of the pendulum is expressed as θ0 ≈ 198 (see model below).
Center mass and second moment of inertia. The first and second mo-
ments of inertia enter as parameters in the model that we develop
further below. We need to determine the relationship between
these moments and the metronome frequency f, which we use as
an experimental control parameter. Determining the two mo-
ments by disassembling the pendulum into separate parts (bob,
pendulum rod, counterweight, axle, and axle-to-rod connector)
and measuring their mass and relative positions result in a tedious
estimation exercise, which is prone to undue error. [To achieve
accurate nominal frequencies, the bobs are manually calibrated
(i.e., the manufacturer filed each pendulum bob individually to fit,
reflecting the high sensitivity on small mass and geometric var-
iations)]. We therefore resort to a simple parameter fit, based on
first principles and few empirical measurements. We measure all
distances relative to the pivot, such that positions on the upper
part of the pendulum rod are positive. Let us denote lbob as the
distance of the bob to the pivot (axle) of the metronome (the
bob’s center mass is located about 5 mm below its upper edge).
The center mass of the pendulum is then located at
r′cm = ðm0l0 +mboblbobÞ=m= r0 +mbob=m · lbob, and the second mo-
ment of inertia is I =m0   l20 +mbobl2bob = I0 +mbobl2bob. The mass of
the bob is mbob = 5  g, and the mass of the entire pendulum is
m= 28  g. To determine r0, we detach the pendulum from its box
and set the bob to the maximum position at lbob ≈ 26 mm at
frequency f = 208 bpm. We then balance the pendulum on the
edge of a razor blade and find that rcm ≈−7:5 mm, corresponding
to r0 = − 12:1 mm. We thus have the (by definition) positive
center mass distance:

rcm ≈
&&−0:0121m+ 0:178 · lbob½m$

&&> 0: [S7]

The second moment of inertia is related to the quasilinear
eigenfrequency ω via Eq. S33, I =mg  rcm   ω−2, which we evaluate
for f = 208 bpm by using the above approximation for rcm and
Eq. S10 below:

I0 = I
&&
f=208 −mbob   l2bob = 1:29× 10−5   kg ·m2: [S8]

We then have

I = 1:29× 10−5   kg ·m2 + 5× 10−3   kg · l2bob
'
m2(: [S9]

Finally, by simply reading off values for lbob for given nominal
frequencies f, we find the following linear fit:

lbob ≈ 7:3× 10−2  m− 2:2× 10−4  m=bpm× f ½bpm$; [S10]

which turns out to be approximately linear for the frequency range
considered. Combination of Eqs. S7–S10 yields the required re-
lationship for I = Iðf Þ and rcm = rcmðf Þ.

Experimental Methods
Experimental Protocol. An experiment is started with a careful
symmetry check of the system: The two uncoupled boards are
displaced from their equilibrium position (in the uncoupled case,
at equilibrium, the rods are vertical: Φ* =Ψ* = 0) and released at
the same time. By observing the decrease of amplitude LΦðtÞ and

LΨðtÞ, we check that the initial friction νs is the same on both
swings. All the metronomes are then wound up, and their nominal
frequency ωn is adjusted to the same value and double-checked.
The metronomes are then firmly and precisely placed on each
board. We then connect the two swings with the spring, which is
firmly set at a distance l above the pivot points. The metronomes
are put in motion. The initial conditions are prepared to be com-
pliant to one of two states: (i) desync-sync (DS) [equivalently, sync-
desync (SD)] corresponding to desynchrony and synchrony on
the left or right swing, respectively, or (ii) both populations are
started in desynchrony (desync-desync). The desynchrony of the
population on one swing is ensured by blocking the motion of
the swing physically; meanwhile, the other population on the
other swing achieves full synchrony via its free swing motion. The
start of an experiment is then marked by the time point when this
swing is released. The motion of the metronomes and the swings
is recorded by video-recording under UV illumination using a
Nikon D90 camera mounted with an 18- to 55-mm lens (DX
format). After the experiment, we repeat the protocol for the very
same parameters and invert the roles of the swings (i.e., a DS
experiment is followed by an SD experiment), such that the left-
to-right symmetry is checked thoroughly.

Data Analysis. The videos from the experiment are further pro-
cessed to extract quantitative information by image processing
using MATLAB (MathWorks). The metronome pendula and the
swings are marked by UV fluorescent spots (Fig. S1B). These
bright spots show up as circular white regions in the images, which
are then tracked by their centroids to obtain the positions xðtÞ
and yðtÞ of the metronome pendula as a function of time. The
phases θð1Þk ðtÞ and θð2Þk ðtÞ of the metronomes and Θð1ÞðtÞ and
Θð2ÞðtÞ of the swing oscillations on populations 1 and 2, re-
spectively, are obtained from the time tracks of those positions
using the Hilbert transform in MATLAB [this technique works
well because the signal is sufficiently narrow-banded (4, 5]:

H
h
xðpÞk ðtÞ−X ðpÞðtÞ−

D)
xðpÞk ðtÞ−X ðpÞðtÞ

E

t

i

= π−1
Z∞

−∞

h
xðpÞk ðt′Þ−X ðpÞðt′Þ−

D
xðpÞk ðt′Þ−X ðpÞðt′Þ

E

t
 
i.

ðt− t′Þ  dt′;

[S11]

where xðpÞk ðtÞ is the position of the kth metronome bob on swing
p= 1; 2, X ðpÞðtÞ is the position of the swing on which the metro-
nome is attached, and

*
xðpÞk ðtÞ−X ðpÞðtÞ

+
t is its temporal mean,

which we subtract from the signal to center the data around the
origin. The Hilbert transform allows us to reconstruct the analyt-
ical representation of the signal xðtÞ [i.e., xaðtÞ= xðtÞ+ iHðxÞðtÞ];
for a narrow-banded signal, we then have xaðtÞ=AðtÞei½ωt+θðtÞ$. The
phases θkðtÞ are used to calculate time-averaged frequencies and
to quantify the synchronization using the Kuramoto order param-
eters for populations p= 1; 2:

ZpðtÞ ≡
1
N

XN

k= 1

exp
,
i
h
θðpÞk ðtÞ− θ

ðpÞ
synðtÞ

i-
; [S12]

where θsynðtÞ is the average phase of the synchronous population
at time t. Further, the phases are used to obtain the average
frequencies over a time window T [i.e., ωk ≈ ½ϕkðTÞ−ϕkð0Þ$=T].
These frequencies may be compared with the average frequency
of the synchronous population, ωsyn ≡ N−1PN

k=1ωk.

Further Experimental Results
In addition to the chimera behavior, we find other collective
modes. For instance, a phase-clustered state is shown in Fig. S4.
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The relative frequencies of the synchronized and desynchronized
populations reveal the presence of distinct frequency clusters in
the desynchronized population. A snapshot of the metronome
phase for the synchronized population, S, and the desynchronized
population further reveals the existence of four phase clusters, C1,
C2, C3, and C4, within the desynchronized population. To analyze
these clusters in more detail, we calculate the order parameter
Z(t) for each of the clusters individually. Although cluster C1 is
locked in antiphase with S, clusters C2, C3, and C4 are not phase-
locked with respect to S. However, clusters C3 and C4 are locked
roughly in antiphase with each other, although still drifting with
respect to S. It is remarkable to note that these various complex
dynamics within the desynchronized population all together give
rise to a time-varying order parameter, which, after an initial
transient, appears highly periodic.
All experimental states have been examined in the manner

outlined above; in particular, for the chimera states, we have
ensured that phase locking between any of the individual oscil-
lators within the asynchronous population is absent.

Model
The dynamics of the two swings are described by the angles ΦðtÞ
and ΨðtÞ and their corresponding angular velocities (Figs. S1 and
S5), which describe the motion along arc coordinates SA =LΦ
and SB =LΨ. The motion of the metronome pendula is described
by their displacement angles ϕiðtÞ on swing A and ψ iðtÞ on swing
B, respectively. As explained above, to set up the governing equa-
tions, we conceptually divide the system into two subsystems: (i)
the system of the two coupled swings and (ii) the system of the N
metronomes populating each swing. For all angles, we use math-
ematically positive orientation (Figs. S1 and S3).

Swing System. We derive equations of motion for the two swings
by considering the external forces acting on the center mass system
of swing A (and swing B, respectively):

M∂2t

 
XA
cm

YA
cm

!

=FA
ext: [S13]

The center mass system is composed of the swing board of mass
ms and the metronomes of mass mm [i.e., M =ms +N·mm =ms +
Nðmbox +mpÞ]. The masses of the suspension rods are negligible
in comparison to the mass of the swings and the metronomes
M. The external force acting on the center mass system is com-
posed of the sum FA

ext =FA
g +FA

s +FA
ν +FA

rod [i.e., the sum of
the following forces (Fig. S5)]:

i) Gravity:

FA
g = − M   g  êy: [S14]

ii) Spring force:

FA
s = −

l
L
~F
A
s = −

l
L

h
~F*
s + k  lðΦ′−Ψ′Þ

i
êx; [S15]

where Φ′, Ψ′ are the displacement angles measured from the
equilibrium and ~F*

s is the equilibrium spring force defined in
Eq. S3.

iii) Friction: The swing friction force is given by

FA
ν = −   νs   ∂tSA   ês = −   νs   L∂tΦ  ês   ; [S16]

where we introduce the unit vector ês = ðcos Φ; sin ΦÞ.

iv) Rod force: The force exerted by the pendulum rods that
constrain the motion is

Frod =
h
−
)
FA
g +FA

s +FA
ν

.
·êr
i
  êr; [S17]

where we introduce the unit vector êr = ðsin Φ; − cos ΦÞ per-
pendicular to ês (this force cancels later).

Center mass system. The X-component of the center mass location
of swing A is given by

MXA
cm = ðms +NmboxÞXA +m

XN

j= 1

)
XA + xAj

.
=MXA +m

XN

j= 1
xAj ;

where XA ≡L  sin Φ and XB ≡Lp +L  sin Ψ are the positions of
swings A and B, respectively; here, we have merged the masses
of the rigid parts of the metronome mass (i.e., the box) with that
of the swing, ms. The center mass of each pendulum k is relative
to swing A located at

xAj = ak  +  rcm  sin  ϕj  ; [S18]

where ak are the positions of metronome k on the swing board,
rcm is the distance of the center mass of the pendulum relative to
its pivot, and ϕk is the angle of metronome k on swing A with the
vertical axis (Fig. S3). This allows us to express the inertia of the
swing’s center mass system in terms of the swing coordinate and
the metronome coordinates xk. We thus have

M∂2t X
A
cm =M∂2t X

A +m
XN

j= 1

∂2t x
A
j : [S19]

Because all metronomes are firmly attached to the swing (i.e.,
∂tak = 0), we obtain

M∂2t X
A
cm = M∂2t X

A +mrcm
XN

j= 1

∂2t   sin  ϕj; [S20]

M∂2t Y
A
cm = M∂2t Y

A +mrcm
XN

j= 1
∂2t   cos  ϕj; [S21]

where the latter is the analogous expression for the center mass
position in the Y-direction.
Projection of the force balance (Eq. S13) onto ês yields

ML
/
cos Φ  ∂2t   sin Φ+ sin Φ  ∂2t   cos Φ

0

+mrcm
XN

j= 1

)
cos Φ  ∂ tt   sin  ϕj + sin Φ  ∂ tt   cos  ϕj

.

= −Mg  sin Φ−
l
L

h
~F*
s + klðΦ′−Ψ′Þ

i
cos Φ−   νs   L∂tΦ:

[S22]
Small-angle approximation.The displacementsΦ,Ψ of the two swings
are small; in particular, the swings make small-amplitude oscil-
lations (∼1° to 2°) around their equilibrium positions Φ* and Ψ*

in Eq. S1; that is:

ΦðtÞ=Φ* +Φ′ðtÞ ;
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ΨðtÞ=Ψ* +Ψ′ðtÞ:

In our experiments, the equilibrium angles lie in a range from
5° to 10° (Table S1). In the following, we shall therefore use the
small-angle approximations sin Φ=Φ+OðΦ3Þ and cos Φ= 1+
OðΦ2Þ. The approximated dynamics are then given by

ML∂2t Φ+mrcm
XN

j= 1

/
∂ tt   sin ϕj +Φ  ∂ tt   cos ϕj

0

= −MgΦ−
l
L

h
~F*
s + klðΦ′−Ψ′Þ

i
−  νs   L∂tΦ:

[S23]

Further, we simplify the equation by observing that
&&&
PN

j=1∂ tt

  sin  ϕj

&&& %
&&&Φ·
PN

j=1∂ tt   cos  ϕj

&&&∼ jΦj and by parameterizing the swing

angles in terms of their equilibrium angles (Eq. S1):

ML∂2t Φ′+mrcm
XN

j= 1

∂ tt   sin  ϕj

= −Mg
)
Φ* +Φ′

.
−

l
L

h
~F*
s + klðΦ′−Ψ′Þ

i
−  νs   L∂tΦ′:

[S24]

Cancellation of the swing equilibrium force ~F*
s in Eq. S3 and

noting that Ψ* = −Φ* > 0 yields the governing equations for
swings A and B:

∂2t Φ′= −
g
L
Φ′+ k

M
l2

L2 ðΨ′−Φ′Þ− νs
M

∂tΦ′−m  rcm
M   L

XN

j= 1
∂2t   sin  ϕj;

[S25]

∂2t Ψ′= −
g
L
Ψ′+ k

M
l2

L2 ðΦ′−Ψ′Þ− νs
M

∂tΨ′−
m  rcm
M   L

XN

j= 1
∂2t   sin  ψ j:

[S26]

Metronome System. To close Eqs. S25 and S26, we need to de-
scribe the motion of the angles of the pendula on swings A and B.
The pendulum angles with the vertical are denoted by ϕi and ψ i
for populations on swings A and B, respectively (Fig. S3). We have

0= I   ∂2t   ϕi +mg  rcm   sin  ϕi + νm   ∂t   ϕi

"$
ϕi

θ0

%2
− 1

#

+mrcm   cos  ϕi   ∂2t X
A   ; [S27]

and the analogous equations for ψ i. The first term is the rota-
tional inertia with the second moment I =

R
ρðrÞr2dV , and the

second term is due to gravity with the first moment rcm of the
metronome pendulum. The two moments rcm and I are param-
etrized in terms of the metronome frequency f (Eqs. S7, S9, and
S10). The third term is a van der Pol term that is commonly used
in literature to model the escapement mechanism [e.g., refs. 1, 6,
7 or the study by Pantaleone (2), who uses the same make of
metronomes as we do here]. The van der Pol term is parameter-
ized with two parameters νm and θ0. The standard displacement
angle of an uncoupled, nonaccelerated metronome pendulum
ð2θ0 = 378− 388Þ mounted on a horizontal surface is 2θ0. The
resulting dissipation is amplitude-dependent and switches sign
depending on the magnitude of the metronome’s displacement
angle: When the pendulum displacement ϕi > θ0, energy is dissi-
pated, whereas in the opposite case, the motion of the pendulum

is amplified (escapement mechanism transfers spring energy to
the pendulum); in effect, the oscillation assumes a limit cycle
oscillation. Even though the term is ad hoc, it is (qualitatively)
generic in the sense that it may be considered a symmetrical
expansion of a dissipation term of the type ∂tϕ · f ðϕÞ to second
order in ϕ, where f ðϕÞ must be symmetrical [note, however, that
the tilting of a metronome, such that it is not standing vertically,
results in asymmetrical ticking (long-short-long-. . .)]. The van
der Pol term may also be thought of as a time-average proxy
of the discrete process performed by the escapement.
Finally, the last term comes from the inertia exerted from the

center mass swing motion. The torque is computed via the pro-
jection of the swing motion in X-direction into the arc coordinates,
(i.e., m  rcm   cos  ϕi   ∂2t X). The center mass of swing A is

M   XA =M   L  sin Φ=ML
/
Φ* +Φ′

0
+O

/
Φ30:

Thus, neglecting higher order terms, we have ∂2t XA ≈L  ∂2t Φ′,
and we get

∂2t ϕi = −
m  g  rcm

I
sin  ϕi −

νm
I
  ∂tϕi

"$
ϕi

θ0

%2

− 1

#

−
m  rcm
I

L  cos  ϕi∂2t Φ′;

[S28]

plus the corresponding equations for the metronome angles ψ i on
swing B.

Summary. The resulting governing equations may be further cast
into a simpler form amenable to physical interpretation of
parameters by introducing the rescaled time τ=ωt:

∂2τΦ′= −
$
Ω
ω

%2
Φ′+ κ

ω2 ðΨ′−Φ′Þ− μs∂τΦ′− x0
L

XN

j= 1

∂2τ   sin  ϕj;

[S29]

∂2τΨ′= −
$
Ω
ω

%2
Ψ′+ κ

ω2 ðΦ′−Ψ′Þ− μs∂τΨ′−
x0
L

XN

j= 1
∂2τ   sin ψ j;

[S30]

∂2τϕi = − sin  ϕi − μm   ∂τϕi

"$
ϕi

θ0

%2
− 1

#
−
ω2L
g

cos  ϕi   ∂2τΦ′; [S31]

∂2τψ i = − sin  ψ i − μm   ∂τψ i

"$
ψ i

θ0

%2
− 1

#
−
ω2L
g

cos  ψ i   ∂2τΨ′; [S32]

where we have dropped the primed notation in the main text. The
rescaled parameters are

μm   ≡ 
νm
Iω

;

μs   ≡ 
νs
Mω

;

ω2   ≡ 
mg  rcm

I
;

Ω2   ≡ 
g
L
;

κ   ≡ 
k
M

l2

L2;
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x0   ≡ 
m  rcm
M

;

where x0 is the distance scale of the swing motion.
Although the model captures the synchronization and chimera

behavior qualitatively, exact quantitative agreement cannot be ex-
pected due to inevitable approximations in describing the met-
ronome dynamics. Specifically, the van der Pol term describing
themetronome escapement is ad hoc; small-scale variations in the
center mass motion of the single-metronome swing system are
neglected (Eq. S24). Other sources of the discrepancy may be
found in the parametrization of the first and second moments of
the metronome pendulum mass. Nevertheless, the model cap-
tures all physical aspects of our experimental system very well.

Numerical Simulations
The model is a differential algebraic equation (DAE) (8) with
4N + 4 variables. For numerical integration, we have used Math-
ematica (Wofram Research), which provides solvers for (implicit)
DAEs (including solvers for the initial conditions that need to be
consistent with the differential equations to be solved). Mathe-
matica’s DAE solver is based on the Implicit Differential-Alge-
braic (IDA) solver (9–11).
Rescaling the swing angles by ~Φ =L=x0  Φ in the equations is

advantageous for numerical integration:

∂2τ ~Φ =
κ
ω2

)
~Ψ − ~Φ

.
−
Ω2

ω2
~Φ − μs∂τ ~Φ −

XN

j= 1
∂2τ   sin  ϕj; [S33]

∂2τ ~Ψ =
κ
ω2

)
~Φ − ~Ψ

.
−
Ω2

ω2
~Ψ − μs∂τ ~Ψ −

XN

j= 1

∂2τ   sin  ψ j; [S34]

∂2τϕi = − sin  ϕi − μm   ∂τϕi

"$
ϕi

θ0

%2

− 1
#
− β  cos  ϕi   ∂2τ ~Φ ; [S35]

∂2τψ i = − sin  ψ i − μm   ∂τψ i

"$
ψ i

θ0

%2

− 1
#
− β  cos  ψ i   ∂2τ ~Ψ : [S36]

Here, we have introduced the following nondimensional
parameters:

μm   ≡ 
νm
I   ω

 ;

μs   ≡ 
νs

M   ω
 ;

β  ≡ 
x0   ω2

g
=
ðm  rcmÞ2

M   I
=
m
M

:
m  r2cm
I

 ;

ω2
r   ≡ 

Ω2

ω2 =
g

L  ω2 =
I

m  L  rcm
 ;

χ   ≡ 
κ
ω2 =

k
M

$
l
L

%2 I
m  g  rcm

 :

Parameters I and rcm are parameterized as functions of the
nominal frequency f (Eqs. S7, S9, and S10), which is one of the
two control parameters in our experiment. These parameters
may be interpreted as follows. The ratio of the first and second
moments of the metronome and swing masses is β, and it de-

termines how much energy is transferred between the metro-
nome and swing, thus controlling the coupling strength between
metronomes in a single population; χ is the spring coupling strength
between the populations. The swing energy is dissipated at rate
μs. The metronome is characterized by μm, and the standard dis-
placement angle is characterized by θ0, which tunes how nonlinear
the metronome is (note that θ0 can only be scaled into the met-
ronome and swing angles if θ0 & 1).
Parameters in our experiment are typically as follows:

N = 15
ms = 0:915  kg
mm =mbox +mp +mbob = 0:093  kg
M =ms +N ×mm = 2:31 kg
m=mp +mbob = 0:028 kg
g= 9:81 m ·  s−2
L= 0:22 m
Lp = 0:2 m
l= 0:15 m   ð0:05 m≤ l≤ 0:25 mÞ
f = 160 bpm   ð40 bpm≤ f ≤ 208 bpmÞ

ωn = 8:38  rad · s−1
ω= 8:61 rad · s−1
θ0 = 19 8= 0:33 rad
Φ* = 8:58= 0:15 rad
k= 68 N ·m−1

νs ∼ 0:1 kg · s−1
νm = 1:8× 10−6 kg ·m2·s−1:

Note that νs and νm have dissimilar units. The value of μm is
based on values obtained from Pantaleone (2). With the above
values, the nondimensional parameters are of the following order:

μs = 0:00016
μm = 0:011
β= 0:0005

ω2
r = 0:6
χ = 0:092;

which are roughly representative of our experiment (Figs. 2 and 3).

Initial Conditions. Initial conditions were prepared to be consistent
with three types of states: (i) fully synchronized consistent with
the in-phase (IP) mode, (ii) with the antiphase (AP) mode, or (iii)
with chimera states, where only one population is synchronized
and the other is desynchronized. For the synchronized states (i
and ii), we use

ϕið0Þ= 2θ0

∂τϕið0Þ= 0

ψ ið0Þ= ± 2θ0

∂τψ ið0Þ= 0;  i= 1 . . .N; [S37]

where the minus signs apply for the AP mode. For chimera states
(iii), the desynchronized population is randomized as follows:

ϕið0Þ= 2θ0ðri − 1=2Þ

ϕ′
ið0Þ= 2θ0ðri − 1=2Þ;   i= 1 . . .N; [S38]

where ri is a random number in [0, 1]. One may then assign
average angles and angular velocities to the synchronized pop-

Martens et al. www.pnas.org/cgi/content/short/1302880110 5 of 10

www.pnas.org/cgi/content/short/1302880110


ulation so that the kinetic and potential energy of metronome
populations A and B matches. For all three types of conditions,
the swings are released from their equilibrium positions with
zero momentum:

~Φ ð0Þ= ~Ψ ð0Þ= 0

∂τ ~Φ ð0Þ= ∂τ ~Ψ ð0Þ= 0: [S39]

Integration of Model Equations and Parameter Sweeps. Simulations
were carried out with identical metronomes until a (quasi-)sta-
tionary state was reached ðτ∼ 12′000Þ. The stability diagram in the
main text (Fig. 4A) was obtained by fixing the nominal metronome
frequency f (138, 160,184, and208bpm)and thengradually increasing
the effective spring rate κ (using the same parameters as in the ex-
periment andn=15metronomesper swing).Foreachparameter step
of the sweep, simulations were reinitialized, with the initial condi-
tions consistent with the IP, AP, or chimera state as listed above.
The resulting phase diagram does not represent observed states

in comprehensive detail but is a simplified view of a complex
spectrum of states. IP and AP states always represent perfectly
synchronized states; the region of a chimera-like state comprises
any states in which at least one population is perfectly synchro-
nized. A detailed stability analysis would be needed to uncover
further questions, including precise stability properties and bi-
furcation scenarios of these states.

Further Simulations. To extend our experiments, we also carried
out simulations for situations that are not possible (or are very
difficult) to achieve experimentally. We mainly carried out two

sets of extended simulations: (i) to investigate the effect of dis-
sipation (in this case, the friction of the swing) on the chimera
behavior and (ii) to study the transition between the different
regions by using an increased number of metronomes to reduce
finite size fluctuations.
Effect of swing friction νs.We sought to investigate the effect of swing
friction on the chimera region in simulations. For these simulations,
we use parameters as listed in the previous section and vary the
swing friction by three orders of magnitude from νs = 0:031 kg=s
to νs = 3:1 kg=s. A series of phase diagrams are plotted in Fig. S6
for increasing values of νs. Although the qualitative behavior
remains the same in all cases, it can be seen that with increasing
friction, the width of the region with unsynchronized (chimera-
like) behavior increases, further demonstrating that the differ-
ence between the experimental and numerical phase diagrams in
the main text (Fig. 3) could be due to such effects.
Simulations with N= 64 metronomes. The transition of chimeras be-
tween AP and IP regions is investigated with an increased number
of metronomes to reduce finite size fluctuations (Fig. 4). The mod-
ification of the parameters as listed below corroborates that the
chimera phenomenon is not specific to a small-parameter region:

f = 184
ω2
r = 0:38
χ = 0:294 . . . 0:266
~β= 0:00031
μs = 0:002
μm = 0:0092
θ0 = 0:66:
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Fig. S1. System with two swings coupled with two identical springs. Each swing carries N= 15 metronomes. (A) Schematics of the experimental setup. (B) Each
swing and the top of each pendulum are marked with fluorescent dots, which are highlighted using UV light. Note that the center mass motion occurs in the
opposite direction of these dots because the center mass of the metronome pendulum lies below its pivot (Fig. S3).

Fig. S2. (A) Two springs mediate the coupling between the two adjacent rod pairs at the front and back sides of the swings (back side shown). The springs are
firmly connected to the rods with plastic clamps. (B) Spring constant of a single spring in our setup has been measured with a value of 34N ·m−1; thus, the
resulting total spring rate is k= 68 N ·m−1 with two springs attached.
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Fig. S3. Metronome has two components: the metronome pendulum of mass m, which constitutes the dynamically active element of the metronome system
(Left), and the metronome box of mass mbox , which is fixed with respect to the swing system (Right). The state of the metronome pendulum is described by its
displacement angle ϕi and its angular velocity ∂tϕi . Half of the standard displacement angle of the pendulum (single uncoupled pendulum) is represented by
θ0. The pendulum is composed of a counterweight (gray disk) and rod (gray) of mass mp. The frequency of the pendulum is adjusted by sliding the bob mass
mbob (black rectangle) above the pivot (empty circle) up and down, resulting in an alteration of the pendulum’s center mass position rcm, which always lies
below the pivot.

Fig. S4. Analysis of a (partially) phase-clustered state obtained for interpopulation coupling of κ= 29:56 and a nominal metronome frequency f = 184 bpm. (A)
Phases of individual metronomes [red, asynchronous population; blue, synchronous population (S)]. Phases belonging to different clusters are shaded in gray
and labeled C1. (B) Frequencies averaged over the last 50% of the observation time, ω= hωit , relative to the average frequency ωsyn of the synchronized
population; red and blue populations are superposed. (C) Panels S-Ck show the complex order parameter evolution of the subpopulations Ck (where k=1,2,3,4)
relative to order parameter of the synchronized population S (i.e., the angular component is subtracted - thus a view in the co-rotating frame is shown); in
addition, panel S-C shows the order parameter representing the entire asynchronous, clustered population. (D) Time evolution of the magnitude of the order
parameters of the synchronous and asynchronous populations.
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Fig. S5. Free body diagram of the swing’s center mass system. The swing center mass system includes the metronome pendula and does not exactly coincide
with the center mass (c.m.) of the board.

Fig. S6. Phase diagrams with varying swing friction νs. The green-shaded region displays the region where one asynchronous population exists. Black dots
denote sampled points in parameter space.

Table S1. Typical equilibrium angles with varying spring lever l

l, cm Φ*, °

7 5.3
10 6.9
11 7.3
14 8.2
20 9.2
23 9.0

Measurements for the equilibrium angles are performed with Lp = 0:2 m,
L= 0:22 m, M=2:3 kg, and k= 68 N/m.

Movie S1. Experimental observation of a chimera state, with the metronomes being synchronous on the left side but asynchronous on the right side. The
motion of each metronome pendulum is highlighted using UV light.

Movie S1
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Movie S2. Experimental observation of an in-phase synchronization mode (i.e., the 2 swings carrying the metronomes are synchronized in-phase). The motion
of each metronome pendulum is highlighted using UV light.

Movie S2

Movie S3. Experimental observation of an anti-phase synchronization mode (i.e. the 2 swings carrying the metronomes are synchronized exactly 180 degrees
out-of-phase). The motion of each metronome pendulum is highlighted using UV light.

Movie S3
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