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Recently, it has been shown that the control energy required to control a large dynamical complex

network is prohibitively large when there are only a few control inputs. Most methods to reduce the

control energy have focused on where, in the network, to place additional control inputs. We also

have seen that by controlling the states of a subset of the nodes of a network, rather than the state

of every node, the required energy to control a portion of the network can be reduced substantially.

The energy requirements exponentially decay with the number of target nodes, suggesting that

large networks can be controlled by a relatively small number of inputs as long as the target set

is appropriately sized. Here, we see that the control energy can be reduced even more if the

prescribed final states are not satisfied strictly. We introduce a new control strategy called balanced
control for which we set our objective function as a convex combination of two competitive terms:

(i) the distance between the output final states at a given final time and given prescribed states and

(ii) the total control energy expenditure over the given time period. We also see that the required

energy for the optimal balanced control problem approximates the required energy for the optimal

target control problem when the coefficient of the second term is very small. We validate our

conclusions in model and real networks regardless of system size, energy restrictions, state

restrictions, input node choices, and target node choices. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4979647]

A typical problem in control applications is that of balanc-

ing the accuracy of the control action (i.e., how close one

can reach a desired state) and the control effort (i.e., the

expenditure of control signals). Here, we investigate the

trade off between the control accuracy and the control

effort in the context of dynamical complex networks.

I. INTRODUCTION

Control of complex dynamical networks is not new.1–14

We define a network as controllable if a set of appropriate

control signals can drive the network from an arbitrary initial

condition to any final condition in finite time. If a network is

controllable, there are several control signals we can choose

from to approach the desired final condition. One important

metric to characterize these control signals is the effort that

each one requires. If u(t) is a control action which performs

the task, the control energy associated with the control action

is the cumulative magnitude of the control action over time.

From optimal control theory, we can define the optimal con-
trol action which both satisfies our initial condition and final

condition and minimizes the control effort required to per-

form the task over the time period of action.15

Different types of control strategies in Refs. 6, 8–12, 14,

and 16–19 have focused on controlling a broad range of

networks such as power grids,20,21 communication net-

works,22,23 gene regulatory networks,24 neuronal systems,25,26

food webs,27 and social systems.28 While controlling a com-

plex network, it becomes important to reduce the required

control energy.

The minimum energy framework has been examined in

Refs. 17 and 18 which have shown that based on the underly-

ing network structure, the set of input nodes, the desired final

state, and other parameters, the energy to control a network

may lie on a distribution that spans a broad range of orders

of magnitude.

One of the methods to reduce the required energy was

investigated in Ref. 19, where additional control signals

were added in optimal locations in the network according to

each node’s distance from the current set of control signals.

Refs. 17 and 18 have only investigated the control energy for

complex networks when the target set coincides with the set

of all nodes. Refs. 14 and 29 examined methods to choose a

minimal set of independent control signals necessary to con-

trol just the targets. Ref. 30, in which the control goal has

been set to affect only a subset of the network nodes, chosen

as the targets of the control action, has considered the effect

of this choice on the required control energy. In fact, the

energy requirements exponentially decay with the reduction

of the number of target nodes.

With respect to the existing literature, here rather than

exactly satisfying the prescribed final states we reduce the

control energy by moving as close as possible to the pre-

scribed final states. We introduce a new control strategy

called balanced control where we set our performance mea-

sure as a convex combination of two objective functions: 1)

a function which minimizes the distance from the final out-

put states at final time to the desired final states and 2) a

a)Electronic mail: ashirin@unm.edu
b)Electronic mail: iklick@unm.edu
c)Electronic mail: fsorrent@unm.edu

1054-1500/2017/27(4)/041103/9/$30.00 Published by AIP Publishing.27, 041103-1

CHAOS 27, 041103 (2017)

http://dx.doi.org/10.1063/1.4979647
http://dx.doi.org/10.1063/1.4979647
http://dx.doi.org/10.1063/1.4979647
mailto:ashirin@unm.edu
mailto:iklick@unm.edu
mailto:fsorrent@unm.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4979647&domain=pdf&date_stamp=2017-04-07


function which minimizes the control effort to achieve the

first goal over the finite time period.

II. RESULTS

A. Problem formulation

Complex networks consist of two parts; a set of nodes

with their interconnections that represent the topology of the

network, and the dynamics which describe the time evolution

of the network nodes. First, we summarize the definitions

needed to describe a network. We define V ¼ fig; i ¼ 1;
…; n to be the set of n nodes that constitute a network. The

adjacency matrix is a real, square n � n matrix, A, which has

nonzero elements Aij if node i receives a signal from node j.
For each node i, we count the number of receiving connec-

tions, called the in-degree jin
i and the number of outgoing

connections, called the out-degree jout
i . The average in-

degree and average out-degree for a network are jav. One

common way to characterize the topology of a network is by

its degree distribution. Often the in-degree and out-degree

distributions of networks that appear in science and engi-

neering applications are scale-free, i.e., p(j) � j–c where j
is either the in-degree or out-degree with corresponding cin

and cout, and most often 2� c� 3.31

While most dynamical networks that arise in science and

engineering are governed by nonlinear differential equations,

the fundamental differences between individual networks and

the uncertainty of precise dynamics make any substantial

overarching conclusions difficult.6,29,31 Nonetheless, linear

controllers have proven to be adequate in many applications

by approximating nonlinear systems as linear systems in local

regions of the n-dimensional state space.32 We examine linear

dynamical systems, as it is a necessary first step to understand

how balanced control may benefit nonlinear systems. The lin-

ear time invariant (LTI) network dynamics are

_xðtÞ ¼ AxðtÞ þ BuðtÞ; yðtÞ ¼ CxðtÞ; (1)

where xðtÞ ¼ ½x1ðtÞ;…; xnðtÞ�T is the n � 1 time-varying

state vector, uðtÞ ¼ ½u1ðtÞ;…; umðtÞ�T is the m � 1 time-

varying external control input vector, and yðtÞ ¼ ½y1ðtÞ;
…; ypðtÞ�T is the p � 1 time-varying vector of outputs, or tar-

gets. The n � n matrix A¼ {aij} is the adjacency matrix

described previously, the n � m matrix B defines the nodes

in which the m control input signals are injected, and the

p� n matrix C expresses the relations between the states that

are designated as the outputs. In addition, the diagonal values

of A, aii, i¼ 1,…, n, which represent self-regulation, are cho-

sen to be unique at each node (see justification in Ref. 33).

These diagonal values are chosen to also guarantee that A is

Hurwitz so the system in Eq. (1) is internally stable. A

matrix A is called a Hurwitz,34 when all eigenvalues of A sat-

isfy Reki< 0 (See Section 3.3 in the book34). We restrict

ourselves to the case when the matrix B (C) has linearly

independent columns (rows) with a single nonzero element,

i.e., each control signal is injected into a single node (defined

as an input node) and each output is drawn from a single

node (defined as a target node). We define Pp � V as the

subset of target nodes and p ¼ jPpj as the number of target

nodes. A small sample schematic is shown in Fig. 1(a) that

demonstrates the graphical layout of our problem emphasizing

the graph structure and the role of input nodes (e.g., node 1 in

the figure) and targets (e.g., node 1, 2, and 3 in the figure).

B. Solution to the optimal balanced control problem

In our optimal balanced control problem, we attempt to

minimize the following cost function,

min
u tð Þ

J ¼ 1� a
2

y tfð Þ � yf

� �T y tfð Þ � yf

� �h i

þ a
2

ðtf

t0

u tð ÞTu tð Þdt (2)

subject to the constraints

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ; xðt0Þ ¼ x0:

Here, the final constraints are in the objective function and

we call these constraints soft constraints as we do not require

them to be satisfied exactly. Note that if we set C¼ In, where

In is the n � n identity matrix, then y(t)¼ x(t). The vector yf

is the prescribed final output state of the nodes described by

the matrix C. Here, a 2 (0, 1] is a scaling parameter by

which we can penalize the two performance measures in the

cost function in (2) to balance the control energy. Note that

in the case in which a¼ 1, the cost function in Eq. (2)

becomes the cost function associated with the optimal output

cost control problem in Ref. 30, where different from Eq.

(2), the final desired state is imposed as a hard constraint.
The solution of the optimization problem in Eq. (2) is

obtained using Pontryagin’s maximum principle35 (See sec-

tions 5.1 and 5.2 in the book35). The Hamiltonian equation

introduces n costates mðtÞ

H x tð Þ; m tð Þ; u tð Þð Þ ¼ a
2

uT tð Þu tð Þ þ mT tð ÞAx tð Þ þ mT tð ÞBu tð Þ:

From the Hamiltonian equation, the following dynamical

relations can be determined:

State Equation: _x tð Þ ¼ @H
@m
¼ Ax tð Þ þ Bu tð Þ;

Costate Equation: _m tð Þ ¼ � @H
@x
¼ �ATm tð Þ;

Stationary Equation: 0 ¼ @H
@u
¼ au tð Þ þ BTm:

The stationary equation is used to determine the optimal con-

trol input

u� tð Þ ¼ � 1

a
BTm: (3)

The time evolution of the costates can be determined with a

final condition of the form, mðtf Þ ¼ ð1� aÞCT�m , where

�m ¼ yðtf Þ � yf

mðtÞ ¼ eATðtf�tÞmðtf Þ ¼ ð1� aÞeATðtf�tÞCT�m; (4)
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where �m will be determined from the final output state. With

the optimal control input known, the time evolution of the

states can also be determined,

x tð Þ ¼ eA t�t0ð Þx0

� 1� a
a

ðt

t0

eA t�sð ÞBBTeAT tf�sð ÞdsCT�m : (5)

The final state of the targeted nodes can be determined

y tfð Þ ¼ CeA tf�t0ð Þx0 �
1� a

a
CWCT�m: (6)

Here, W ¼
Ð tf

t0
eAðtf�sÞBBTeATðtf�sÞds is the controllability

Gramian. When C is defined as above, i.e., its rows are

linearly independent versors, the reduced Gramian Wp is a

p-dimensional principal submatrix of W, i.e., we write

Wp¼CWCT. The p dimensional vector �m can be determined

in a straightforward manner,

�m ¼ a
1� a

a
1� a

Ip þWp

� ��1

� CeA tf�t0ð Þx0 � yf

� �
¼ a

1� a
U�1

p b ; (7)

where b ¼ ðCeAðtf�t0Þx0 � yf Þ and Up ¼ a
1�a Ip þWp

� �
. For

0< a< 1, the p � p matrix Up is always a symmetric, posi-

tive definite matrix, and invertible. In fact, the matrix Wp is

FIG. 1. Example Network. Panel (a)

displays a sample network with three

nodes. Each node has self regulation

labeled by aii. Input node (node 1) is in

blue and target nodes for balanced con-

trol are in magenta (nodes 1, 2, and 3).

Node 1 is directly connected to an

input u1 and target nodes 1, 2, and 3

are directly connected to outputs y1, y2,

and y3, respectively. In panel (b), we

examine the limiting relationship in

Eq. (16) for the three node network.

For a large value of a¼ 10–1, the out-

put states and the optimal control input

are provided in panels (c) and (e),

respectively. For a small value of

a¼ 10–7, the output states and the opti-

mal control input are provided in pan-

els (d) and (f), respectively.
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positive semidefinite and the eigenvalues of Up are the

same as the eigenvalues of Wp plus the positive quantity
a

1�a. Moreover, the eigenvectors of the matrices Up and Wp

are the same. From Eqs. (3)–(7), the optimal control input

signal when the final condition is in the objective function

is equal to

u�ðtÞ ¼ �BTeATðtf�tÞCTU�1
p b: (8)

The equation for the time evolution of the outputs is equal to

yðtÞ ¼ CeAðt�t0Þx0 þ C

ðt

t0

eAðt�sÞBu�ðsÞds: (9)

Different from the formulation of linear optimal control

commonly seen in texts on the subject, we approach the

problem in two unique ways. First, we consider the control

action that minimizes the cumulative magnitude of the con-

trol input, restricted by a left boundary condition applied to

the state of the system (the initial condition) and a final con-

dition applied to only the outputs of the system. Second, we

make specific the methodology as it applies to networks by

restricting our definitions of the matrices B and C as dis-

cussed previously.

C. Optimal energy

The energy associated with the control input in Eq. (8),

while only targeting the nodes for balanced control in Pp, is

defined as �ðpÞ ¼
Ð tf

t0
u�ðtÞTu�ðtÞdt. Note that �(p) also depends

on which p nodes are in the set, Pp. The energy �(p) is a mea-

sure of the ‘effort’ which must be provided to achieve the

control goal. In the subsequent definitions and relations,

when a variable is a function of p, we more specifically

mean it is a function of a specific target set of size p of which

there are n!
p!ðn�pÞ! possible sets. We can define the minimum

balanced control energy (MBCE) when the control input is

of the form in Eq. (8) as

�ðpÞ ¼ ðyf � CeAðtf�t0Þx0ÞTU�1
p WpU�1

p

� ðyf � CeAðtf�t0Þx0Þ ¼ bTMpb; (10)

where the vector b ¼ CeAðtf�t0Þx0 � yf and Mp ¼ U�1
p WpU�1

p

is a p � p symmetric, real, semi-positive definite matrix.

Note that the matrix Mp has the same set of eigenvectors as

the matrix Wp. Moreover, the following relation relates the

eigenvalues of Mp and Wp:

l
pð Þ

i ¼
a

1� a
þ k

pð Þ
i

� ��2

k
pð Þ

i ; (11)

where we denote the eigenvalues of Mp as lðpÞi and the eigen-

values of Wp as kðpÞi ; i ¼ 1;…; p. It follows that the energy

expression (10) defines an ellipsoid in the variable b. The

axes of the ellipsoid are unaffected by the particular choice

of the parameter a, while the width of each axis changes

with the square root of the corresponding eigenvalue of the

matrix Mp.

D. Worst case direction

We consider the eigenvalues of Mp as lðpÞi ; i ¼ 1;…; p,

which are ordered such that 0 � lðpÞ1 � 	 	 	 � lðpÞp . By defin-

ing the magnitude of the vector, jbj ¼ b, we can define the

‘worst-case’ (or maximum) energy according to the

Rayleigh quotient,

0 � b2lðpÞ1 � bTMpb � b2lðpÞp <1: (12)

The upper extreme of the control energy denoted by �ðpÞmax, for

the control action in Eq. (8), is maxf�ðpÞg � lðpÞp , which is

what we call the ‘worst-case’ energy for optimal balanced

control. For an arbitrary vector b, which can be represented

as a linear combination of the eigenvectors of Mp, the energy

can be defined as a weighted sum of the eigenvalues, lðpÞi ,

which includes the worst-case energy.

E. Solution to the optimal output cost control problem

Here, we summarize briefly the results for the optimal

output cost control problem in Ref. 30. The cost function is

minimized

min
u tð Þ

J ¼ 1

2

ðtf

t0

u tð ÞTu tð Þdt; (13)

where we choose u(t) such that it satisfies the prescribed ini-

tial state, x(t0)¼ x0 and final output y(tf)¼ yf. We call this

latter condition a hard constraint as these constraints need to

be satisfied exactly.

The optimal control input signal when the final condi-

tions are hard constraints (see the derivation in the supple-

mentary material) and under the assumption that the triplet

(A, B, C) is output controllable30

u�ðtÞ ¼ �BTeATðtf�tÞCTðCWCTÞ�1
b: (14)

The minimum energy for the optimal output cost control is

EðpÞ ¼ ðyf � CeAðtf�t0Þx0ÞTðCWCTÞ�1

� ðyf � CeAðtf�t0Þx0Þ ¼ bTWpb: (15)

F. Energy scaling with the penalizing factor a

We would like to determine the limiting energy when a
! 0 in Eq. (10). At each p, Pp contains p nodes in the target

set and Up is the p � p invertible matrix. When a ! 0, Up

!Wp, the output controllability Gramian, and the MBCE

energy for this limit is

lim
a!0

�ðpÞ ¼ EðpÞ: (16)

We also provide the limiting behavior for the worst case

energy direction

lim
a!0

�ðpÞmax ¼ EðpÞmax: (17)

A small, three node example of the benefits of balanced

control is shown in Fig. 1, where each node is in the target
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set (p¼ n¼ 3). Fig. 1(a) displays a sample network with

three nodes. Input node (node 1) is in blue and target nodes

for balanced control are in magenta (nodes 1, 2, and 3).

Node 1 is directly connected to an input u1 and target nodes

1, 2, and 3 are directly connected to outputs y1, y2, and y3,

respectively. In panel (b), we examine the limiting relation-

ship in Eq. (16) for the three node network. From Fig. 1(b),

we also see how the balanced control strategy reduces the

control energy as the penalizing factor a increases. For a

large value of a¼ 10�1, the output states and the optimal

control input are provided in panels (c) and (e), respectively.

For small value of a¼ 10�7, the output states and the optimal

control input are provided in panels (d) and (f), respectively.

From panels (e) and (f), the integral of the magenta curves is

�(3)
 4.2 and �(3)
 219, respectively. We see that the energy

can be reduced by 55 times in the former case.

G. Optimal return in limiting case

In the cost function (2), the two performance measures

are multiplied each by a penalizing factor. It is important to

investigate the relationship between the optimal return corre-

sponding to each performance measure as a varies. The opti-

mal return value corresponding to (2) can be written

J� ¼ 1� a
2

f2 þ a
2
� pð Þ ¼ J�1 þ J�2 ; (18)

where f ¼ jjyðtf Þ � yf jj, the final state error at time tf,
J�1 ¼ 1�a

2
f2, and J�2 ¼ a

2
�ðpÞ. We call the ratio J�1=J� the opti-

mal error return ratio and J�2=J� the optimal energy return

ratio. Note that the sum of the two ratios is equal to 1, i.e.,

J�1=J� þ J�2=J� ¼ 1.

Figure 2 shows how the ratios J�1=J� and J�2=J� vary

with a for the case of a scale free network with n¼ 300,

cin¼ cout¼ 2.5, and j¼ 8. We set the fraction of target

nodes, p/n¼ 0.8 and the final time tf¼ 1. The values on the

abscissa axis are �log a so that large values of a are shown

on the left hand side and small values of a are shown on the

right hand side. When a ! 0, f ! 0 faster than a (which

multiplies �(p)). Therefore, when a is very small J� is domi-

nated by J�2 , and we see from Fig. 2 that J�1=J� !
0; J�2=J� ! 1 as a ! 0. On the other hand, from Fig. 2,

we see that as a approaches 1, J�2=J� ! 0 and J�1=J� ! 1. As

a increases (decreases), the error component (the energy

component) becomes dominant in the optimal return value

in Eq. (18).

H. Results and discussion

We perform numerical simulations to examine the two

important results discussed in Subsections II E and II F.

For our simulations in Figures 3 and 4, we consider scale-

free model networks, constructed with the static model in

Ref. 36 for specific parameters j, the average degree, and

cin¼ cout¼ c, the power law exponent of the in- and out-

degrees, and we choose the initial state at the origin, x0¼ 0,

and final state jjyf jj ¼ 1. We choose 10 different final states yf

uniformly distributed on the unit sphere centered in the origin,

and we take the mean of all results over these realizations. We

also consider tf¼ 1 and the fraction of input nodes nd¼ 0.4. In

Figs. 3 and 4, the solid line corresponds to the output cost con-

trol energy, E(p), where p / n is the associated target set.

On the left half panels of Fig. 3, we construct scale free

networks with the static model such that n¼ 300 and j¼ 8 in

each case. Each point is the average of 10 realizations and

the bars represent one standard deviation. The target nodes

are chosen from the set of nodes randomly and indepen-

dently for each realization. In Fig. 3(a), the expected limiting

relation discussed in Subsection II F is seen for each network

irrespective of power-law exponent (cin¼ cout). We notice

that, when the network is more heterogeneous (c is low, e.g.,

c¼ 2.5), the terminal balancing is more beneficial compared

to the networks that are more homogeneous (c is high, e.g.,

c¼ 3) as the balanced control energy remains close to the

output control energy for homogeneous networks. We

observe results qualitatively similar for any size of the termi-

nal target set. On the left half panels of Fig. 3, we construct

scale free networks with the static model such that n¼ 300

and cin¼ cout¼ 2.5 in each case. Each point is the average of

10 realizations and the bars represent one standard deviation.

Each set of target nodes is chosen from the set of nodes ran-

domly and independently for each realization. In Fig. 3(b),

the expected limiting relation discussed in Subsection II F

is seen for each network irrespective of average degree (j).

We notice that, when the network is more sparse (j is low,

e.g., j¼ 5), the terminal balancing is more beneficial com-

pared to the networks that are dense (j is high, e.g., j¼ 15)

as the balanced control energy remains close to the output

control energy for dense networks. This result holds for any

size of the target sets. In panels (c) and (d), we show the

error f of the final state at final time tf for the same target

nodes and in panels (e) and (f), we show that the optimal

return function J� decreases as a decreases.

Besides the average degree and power-law exponent

which describe the network (Fig. 3), there are other parame-

ters that can affect the control energy such as the time hori-

zon and the number of designated input nodes. In Fig. 4,

FIG. 2. Ratio of optimal return J�. Ratio of optimal error return J�1=J� and

ratio of optimal energy return J�2=J� are plotted versus the scaling parameter,

a. For the simulation, we choose a scale free network with n¼ 300,

cin¼ cout¼ 2.5, and j¼ 8. We set the fraction of target nodes, p/n¼ 0.8 and

the final time tf¼ 1.
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each panel (a)–(f) corresponds to the size of target node set

p/n¼ 0.8. The target nodes are chosen from the set of nodes

randomly and independently for every realization. Each

point is the average of 10 realizations and the error bars rep-

resent one standard deviation. The network has properties:

n¼ 300, cin¼ cout¼ 2.5, j¼ 8. On the left half panels, we

show the limiting relationship holds as the time horizon

defined as tf – t0 changes. We notice that, when the time hori-

zon is small (e.g., tf – t0¼ 0.01), the terminal balancing is

more beneficial compared to large time horizon (e.g., tf –

t0¼ 10) as the balanced control energy remains close to the

output control energy. On the right half panels, we show the

limiting relationship holds as the number of input nodes nd

changes. We notice that, when the number of designated

input nodes is small (e.g., nd¼ 0.4), the terminal balancing is

more beneficial compared to a large number of input nodes

(e.g., nd¼ 1) as the balanced control energy remains close to

the output control energy for a large number of inputs. This

result holds for any size of the target sets. In panels (c) and

(d), we show the error f of the final state at final time tf for

the same target nodes and in panels (e) and (f), we show that

the optimal return function J� decreases as a decreases.

We also analyze datasets collected from various fields in

science and engineering to study how the worst-case energy

for MBCE changes with a and the size of the target set under

balanced control for networks with more realistic structures.

In Fig. 5, we consider six groups of datasets: Circuit,37

Protein Structure,37 Metabolic,38 Food Web,39–42 Social,43–46

and Infrastructure.47–49 For our simulation, we set tf¼ 1 and

nd¼ 0.45. We take 30 realizations for one particular target

fraction and take the mean over several realizations. We only

show the results in Fig. 5 for p/n¼ 0.1 (for sufficient values

of p our results are qualitatively the same). For comparison

among the real datasets, we choose one network from each

network group and plot �ðpÞmax versus a in Fig. 5. We see for

small a, say, a¼ 10�10, the Metabolic network benefits most

as the control energy for balanced control reduces signifi-

cantly from the output control energy (magenta solid line).

On the other hand, the Food Web and Social network are

not benefited as much as balanced control energy remains

approximately the same, in comparison. However, for

large values of a, say, a¼ 10�1, all of the networks need

approximately the same amount of energy for balanced

control.

FIG. 3. The limiting relationship of �(p)

with respect to model network parame-

ters c and j. Both panels (a) and (b)

corresponds to the size of target frac-

tion, p/n¼ 0.8. In the left half panels,

the log of the control energy for bal-

ance control, �(p), the final state error f,

and the optimal return J* correspond to

networks with a fixed j¼ 8 and differ-

ent power-law exponent (cin¼ cout) are

plotted versus a, respectively. The

solid line corresponds to the output

cost control energy, E(p). The expected

limiting relation is seen for each net-

work irrespective of power-law expo-

nent (cin¼ cout). In the right half

panels, log �ðpÞ, f and log J� corre-

sponding to networks with a fixed

cin¼ cout¼ 2.5 and different average

degree (j) are plotted versus a, respec-

tively. The expected limiting relation

is seen for each network irrespective of

average degree (j).
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III. METHODS

A. Model networks

In our analyses, similar to Ref. 17, we assume that the

networks have stable dynamics. The scale free model net-

works we consider throughout the paper are constructed

with the static model.36 Diagonal noise, di, is included,

drawn from a uniform distribution between �1 and 1 so

that the eigenvalues of the adjacency matrix are all

unique. The weighted adjacency matrix A is stabilized

with a value g such that each diagonal value of A is

{aii}¼ di þ g where i¼ 1,…, n. The value g is chosen such

that the maximum eigenvalue of A is equal to �1. The

matrix B is constructed by choosing which nodes in the

network require an independent control signal. The matri-

ces B (C) are composed of m (p) versors as columns

(rows). We use the same method to choose input nodes as

in Ref. 30.

B. Numerical controllability

The controllability Gramian, Wp, can be calculated as a

function of the eigendecomposition30 of the state matrix

FIG. 4. The limiting relationship of �(p)

as Time Horizon and Input Node

Fraction are varied. We hold the frac-

tion of target nodes p/n¼ 0.8. In the

left half panels, the log of the control

energy for balanced control, �(p), the

final state error f and the optimal

return J* for different time horizons tf
are plotted versus a. The solid line cor-

responds to the output cost control

energy, E(p). We show the expected

limiting relation for different time

horizons. In the right half panels,

log �ðpÞ, f and log J� for different input

node fraction nd are plotted versus a.

We show the expected limiting relation

for different input node fractions.

FIG. 5. Comparison among the real dataset. The log of the maximum energy

for terminal control, �
ðpÞ
max, is plotted versus the scaling parameter, a.
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A¼VKV�1. For this article, we use the multi-precision pack-

age Advanpix for Matlab. The Matlab toolbox Advanpix50

allows the computation of the eigendecomposition of Wp to

be performed in an arbitrarily precise manner. This precision

allows us to calculate the eigendecomposition of Wp, the

invertible matrix Up, and the matrix Mp accurately. We also

use Advanpix when computing the energy for the cost func-

tion in Eq. (10).

IV. CONCLUSION

In this paper we provide an energy efficient control

strategy we call balanced control strategy. We see that by

changing the penalizing factor a in the cost function in Eq.

(2), the control energy that is needed for balanced control

can be reduced dramatically. For example, in Fig. 1(b), we

see that the control energy can be reduced if we relax the

final state conditions. We also see the limiting behavior as a
! 0 MBCE approaches the output cost control energy. The

above two results are general regardless of the network

type, size, and other properties. See Figs. 1(b), 3, 4, and 5.

From Figure 3, we see that the sparse and heterogeneous

networks benefit more from our balanced control strategy

than dense and homogeneous networks. We discuss the

effect of other parameters, especially time horizon and

number of input nodes on the MBCE and its limiting behav-

ior. Several real datasets have also been examined to verify

this result. In Fig. 5, we compare the results for different

groups of real networks and conclude that the biological

networks (e.g., metabolic, protein structure) are those that

benefit most from the balanced control strategy.

SUPPLEMENTARY MATERIAL

See supplementary material for complete derivation of

the minimum energy output control problem and the defini-

tion of versor.
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